Skip to main content

Advertisement

Log in

Voltammetric Determination of Ceftizoxime by a Carbon Paste Electrode Modified with Ionic Liquid and Cu (Him)2 Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ceftizoxime (CFX) is used to reduce the infection caused by both gram-negative and gram-positive bacteria. In this report, a novel electrochemical sensor for CFX comprising a Cu(Him)2 nanoparticles and ionic liquid (IL) hybride modified carbon paste electrode (CPE) has been developed. The structural properties of Cu(Him)2 nanoparticles was characterized using energy-dispersive X-ray spectroscopy (EDX) analyses, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results illustrate that Cu(Him)2/ILCPE exhibits an excellent electrocatalytic effect in the electrooxidation of CFX that leads to a considerable improvement in the corresponding anodic peak current. Under the best experimental conditions, the sensor exhibited a linear response to CFX from 2.0 to 1000.0 μM, with a limit of detection (LOD) of 0.5 nM. Finally, this also allows the development of a highly sensitive voltammetric sensor for the determination of CFX in pharmaceutical and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Azadmehr F, Zarei K (2020) Ultrasensitive determination of ceftizoxime using pencil graphite electrode modified by hollow gold nanoparticles/reduced graphene oxide. Arab J Chem 13:1890–1900

    Article  CAS  Google Scholar 

  2. Beytur M, Kardaş F, Akyıldırım O, Özkan A, Bankoğlu B, Yüksek H, Atar N (2018) A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime. J Mol Liq 251:212–217

    Article  CAS  Google Scholar 

  3. Wang L, Zheng X, Zhong W, Chen J, Jiang J, Hu P (2016) Validation and application of an LC–MS–MS method for the determination of ceftizoxime in human serum and urine. J Chromatogram Sci 54:713–719

    Article  CAS  Google Scholar 

  4. Shahrokhian S, Ranjbar S, Ghalkhani M (2016) Modification of the electrode surface by Ag nanoparticles decorated nano diamond-graphite for voltammetric determination of ceftizoxime. Electroanalysis 28:469–476

    Article  CAS  Google Scholar 

  5. Suzuki A, Noda K, Noguchi H (1980) High-performance liquid chromatographic determination of ceftizoxime, a new cephalosporin antibiotic, in rat serum, bile and urine. J Chromatogr B 182:448–453

    Article  CAS  Google Scholar 

  6. Sanli S, Sanli N, Gumustas M, Ozkan SA, Karadas N, Aboul-Enein HY (2011) Simultaneous estimation of ceftazidime and ceftizoxime in pharmaceutical formulations by HPLC method. Chromatographia 74:549

    Article  CAS  Google Scholar 

  7. Mccormick EM, Echols RM, Rosano TG (1984) Liquid chromatographic assay of ceftizoxime in sera of normal and uremic patients. Antimicrob Agents Chemother 25:336–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Al-Momani IF (2001) Spectrophotometric determination of selected cephalosporins in drug formulations using flow injection analysis. J Pharma Biomed Anal 25:751–757

    Article  CAS  Google Scholar 

  9. El Walily AFM, Gazy AAK, Belal SF, Khamis EF (2000) Use of cerium (IV) in the spectrophotometric and spectrofluorimetric determinations of penicillins and cephalosporins in their pharmaceutical preparations. Spectros Lett 33:931–948

    Article  Google Scholar 

  10. Ojani R, Raoof JB, Zamani S (2010) A novel sensor for cephalosporins based on electrocatalytic oxidation by poly (o-anisidine)/SDS/Ni modified carbon paste electrode. Talanta 81:1522–1528

    Article  CAS  PubMed  Google Scholar 

  11. Owens GS, Lacourse WR (1996) Pulsed electrochemical detection of sulfur-containing compounds following microbore liquid chromatography. Curr Sep 14:82–89

    CAS  Google Scholar 

  12. Yola ML, Göde C, Atar N (2017) Molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes for electrochemical recognition of bilirubin. Electrochim Acta 246:135–140

    Article  CAS  Google Scholar 

  13. Kardaş F, Beytur M, Akyıldırım O, Yüksek H, Yola ML, Atar N (2017) Electrochemical detection of atrazine in wastewater samples by copper oxide (CuO) nanoparticles ionic liquid modified electrode. J Mol Liq 248:360–363

    Article  CAS  Google Scholar 

  14. Srivastava AK, Upadhyay SS, Rawool CR, Punde NS, Rajpurohit AS (2019) Voltammetric techniques for the analysis of drugs using nanomaterials based chemically modified electrodes. Curr Anall Chem 15:249–276

    Article  CAS  Google Scholar 

  15. Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Sugih Nugraha A, Won Jang H, Yamauchi Y, Shokouhimehr M (2021) Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J Mater Chem A 9:8195–8220

    Article  CAS  Google Scholar 

  16. Srikanta S, Parmeswara Naik P, Krishanamurthy G (2019) Electrochemical behaviour of 5-methoxy-5,6-bis(3-nitropheyl-4,5-dihydro-1,2,4-triazine-3(2H))-thione in presence of salicylaldehyde on zinc cathode with surface morphology and biological activity. Asian J Green Chem 4:149–158

    Google Scholar 

  17. Siddeeg SM, Alsaiari NS, Tahoon MA, Rebah FB (2020) The application of nanomaterials as electrode modifiers for the electrochemical detection of ascorbic acid. Int J Electrochem Sci 15:3327–3346

    Article  CAS  Google Scholar 

  18. Elobeid WH, Elbashir AA (2019) Development of chemically modified pencil graphite electrode based on benzo-18-crown-6 and multi-walled CNTs for determination of lead in water samples. Prog Chem Biochem Res 2:24–33

    Article  CAS  Google Scholar 

  19. Rshad S, Mofidi Rasi R (2019) Electrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue. Eurasian Chem Commun 1:43–52

    Google Scholar 

  20. Nejad FG, Tajik S, Beitollahi H, Sheikhshoaie I (2021) Magnetic nanomaterials based electrochemical (bio) sensors for food analysis. Talanta 228:122075

    Article  CAS  Google Scholar 

  21. Taei M, Salavati H, Fouladgar M, Abbaszadeha E (2020) Simultaneous determination of sunset yellow and tartrazine in soft drinks samples using nanocrystallites of spinel ferrite-modified electrode. Quarte J Iran Chem Commun 8:67–79

    CAS  Google Scholar 

  22. Rabiee N, Safarkhani M, Rabiee M (2018) Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian J Nanosci Mater 1:63–73

    Google Scholar 

  23. Tajik S, Beitollahi H, Asl MS, Jang HW, Shokouhimehr M (2021) BN-Fe3O4-Pd nanocomposite modified carbon paste electrode: Efficient voltammetric sensor for sulfamethoxazole. Ceram Int 47:13903–13911

    Article  CAS  Google Scholar 

  24. Al-Jawadi AM, Majeed MI (2021) Detection of anticancer drug by electrochemical sensors at modified electrode (MWCNT/polyEosin-Y). Nanomed Res J 6:50–59

    Google Scholar 

  25. Messaoud NB, Ghica ME, Dridi C, Ali MB, Brett CM (2017) Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens Actuators B Chem 253:513–522

    Article  CAS  Google Scholar 

  26. Khalilzadeh MA, Tajik S, Beitollahi H, Venditti RA (2020) Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@ CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Indust Eng Chem Res 59:4219–4228

    Article  CAS  Google Scholar 

  27. Batista LCD, Santos TIS, Santos JEL, da Silva DR, Martínez-Huitle C (2021) Metal organic Framework-235 (MOF-235) modified carbon paste electrode for catechol determination in water. Electroanalysis 33:57–65

    Article  CAS  Google Scholar 

  28. Payehghadr M, Taherkhani Y, Maleki A, Nourifard F (2020) Selective and sensitive voltammetric sensor for methocarbamol determination by molecularly imprinted polymer modified carbon paste electrode. Eurasian Chem Commun 2:982–990

    CAS  Google Scholar 

  29. Kalcher K, Kauffmann JM, Wang J, Švancara I, Vytřas K, Neuhold C, Yang Z (1995) Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990–1993. Electroanalysis 7:5–22

    Article  CAS  Google Scholar 

  30. Mahmoud AM, Mahnashi MH, El-Wekil MM (2021) Indirect differential pulse voltammetric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode: application to different water samples. Talanta 221:121562

    Article  CAS  PubMed  Google Scholar 

  31. Abrishamkar M, Ehsani Tilami S, Hosseini Kaldozakh S (2020) Electrocatalytic oxidation of cefixime at the surface of modified carbon paste electrode with synthesized nano zeolite. Adv J Chem A 3:767–776

    CAS  Google Scholar 

  32. Payehghadr M, Adineh Salarvand S, Nourifard F, Rofouei MK, Bahramipanah N (2019) Construction of modified carbon paste electrode by a new pantazene ligand for ultra-trace determination of ion silver in real samples. Adv J Chem Section A 2:377–385

    CAS  Google Scholar 

  33. Akça A, Karaman O, Karaman C (2021) Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective. ECS J Solid State Sci Technol 10:041003

    Article  CAS  Google Scholar 

  34. Karimi-Maleh H, Bananezhad A, Ganjali MR, Norouzi P, Sadrnia A (2018) Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl Surf Sci 441:55–60

    Article  CAS  Google Scholar 

  35. Karaman C (2021) Orange peel derived-nitrogen and sulfur Co-doped carbon dots: a nano-booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis 33:1356–1369

    Article  CAS  Google Scholar 

  36. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188:1–15

    Article  CAS  Google Scholar 

  37. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2019) 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos Part B 172:666–670

    Article  CAS  Google Scholar 

  38. Tajik S, Beitollahi H, Jang HW, Shokouhimehr M (2021) A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta 232:122379

    Article  CAS  PubMed  Google Scholar 

  39. Shaikh UU, Tamboli Q, Pathange SM, Dahan ZA, Pudukulathan Z (2018) An efficient method for chemoselective acetylation of activated alcohols using nano ZnFe2O4 as catalyst. Chem Methodol 2:73–82

    CAS  Google Scholar 

  40. Shahzad H, Ahmadi R, Sheshmani S (2020) Investigating the performance of nano structure C60 as nano-carriers of anticancer cytarabine, a DFT study. Asian J Green Chem 4:355–366

    CAS  Google Scholar 

  41. Du H, Xie Y, Wang J (2021) Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. TrAC Trends Anal Chem 116178.‏

  42. Khataee A, Sohrabi H, Arbabzadeh O, Khaaki P, Majidi MR (2021) Frontiers in conventional and nanomaterials based electrochemical sensing and biosensing approaches for Ochratoxin A analysis in foodstuffs: a review. Food Chem Toxicol 112030.‏

  43. Sheikhshoaie I, Rezazadeh A, Ramezanpour S (2018) Removal of Pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite. Asian J Nanosci Mater 1:271–281

    Google Scholar 

  44. Madadi Z, Soltanieh M, Bagheri Lotfabad T, Nazari S (2019) Green synthesis of titanium dioxide nanoparticles with Glycyrrhiza glabra and their photocatalytic activity. Asian J Green Chem 4:256–268

    Google Scholar 

  45. Ghafour Taher S, Abdulkareem Omar K, Mohammed Faqi-Ahmed B (2019) Green and selective oxidation of alcohols using MnO2 nanoparticles under solvent-free condition using microwave irradiation. Asian J Green Chem 4:231–238

    Google Scholar 

  46. Fazal-ur-Rehman M, Qayyum I (2020) Biomedical scope of gold nanoparticles in medical sciences; an advancement in cancer therapy. J Med Chem Sci 3:399–407

    CAS  Google Scholar 

  47. Maleh HK, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati A, Tanhaei B, Sen F, Shabani-nooshabadi M, Asrami PN, Al-Othman A (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 184:113252

    Article  CAS  Google Scholar 

  48. Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Rostamnia S, Fu L, Saberi-Movahed F, Samira M (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60:816–823

    Article  CAS  Google Scholar 

  49. Zhou K, Shen D, Li X, Chen Y, Hou L, Zhang Y, Sha J (2020) Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta 209:120507

    Article  CAS  PubMed  Google Scholar 

  50. Dong Y, Yang L, Zhang L (2017) Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nanohybrid material-modified electrode. J Agric Food Chem 65:727–736

    Article  CAS  PubMed  Google Scholar 

  51. Haga MA, Kobayashi K, Terada K (2007) Fabrication and functions of surface nanomaterials based on multilayered or nanoarrayed assembly of metal complexes. Coord Chem Rev 251(21–24):2688–2701

    Article  CAS  Google Scholar 

  52. Su CC, Jan HC, Kuo-Yih H, Shyh-Jiun L, Shion-Wen W, Sue-Lein W, Sheng-Nan L (1992) Bonding properties of Cu (II)-imidazole chromophores: spectroscopic and electrochemical properties of monosubstituted imidazole copper (II) complexes. Molecular structure of [Cu (4-methylimidazole)4 (ClO4) 2]. Inorg Chim Acta 196:231–240

    Article  CAS  Google Scholar 

  53. Kumar P, Joseph A, Ramamurthy PC, Subramanian S (2012) Lead ion sensor with electrodes modified by imidazole-functionalized polyaniline. Microchim Acta 177:317–323

    Article  CAS  Google Scholar 

  54. Zhang SS, Niu SY, Qu B, Jie GF, Xu H, Ding CF (2005) Studies on the interaction mechanism between hexakis (imidazole) manganese (II) terephthalate and DNA and preparation of DNA electrochemical sensor. J Inorg Biochem 99:2340–2347

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Z, Zhou B, Su Z, Ma H, Li C (2008) A new [As3Mo3O15] 3− fragment decorated with Cu (I)-imi (imi= imidazole) complexes: Synthesis, structure and electrochemical properties. Inorg Chem Commun 11:648–651

    Article  CAS  Google Scholar 

  56. Oberhausen KJ, O’brien RJ, Richardson JF, Buchanan RM (1990) New tripodal Cu (II) complexes containing imidazole ligands. Inorg Chim Acta 173:145–154

    Article  CAS  Google Scholar 

  57. Wei X, Li N, Zhang X (2017) Cu@ C nanoporous composites containing little copper oxides derived from dimethyl imidazole modified MOF199 as electrocatalysts for hydrogen evolution reaction. Appl Surf Sci 425:663–673

    Article  CAS  Google Scholar 

  58. Forster RJ, Pellegrin Y, Keyes TE (2007) pH effects on the rate of heterogeneous electron transfer across a fluorine doped tin oxide/monolayer interface. Electrochem Commun 9:1899–1906

    Article  CAS  Google Scholar 

  59. Liu F, Wang K, Bai G, Zhang Y, Gao L (2004) The pH-induced emission switching and interesting DNA-binding properties of a novel dinuclear ruthenium (II) complex. Inorg Chem 43:1799–1806

    Article  CAS  PubMed  Google Scholar 

  60. Barman K, Jasimuddin S (2014) Electrochemical detection of adenine and guanine using a self-assembled copper (II)–thiophenyl-azo-imidazole complex monolayer modified gold electrode. RSC Adv 4:49819–49826

    Article  CAS  Google Scholar 

  61. Neelakantan MA, Sundaram M, Sivasankaran Nair M (2011) Solution equilibria of Ni (II), Cu (II), and Zn (II) complexes involving pyridoxine and imidazole containing ligands: pH metric, spectral, electrochemical, and biological studies. J Chem Eng Data 56:2527–2535

    Article  CAS  Google Scholar 

  62. Jain R, Rather JA, Dwivedi A (2010) Highly sensitive and selective voltammetric sensor fullerene modified glassy carbon electrode for determination of cefitizoxime in solubilized system. Electroanalysis 22:2600–2606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Beitollahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajik, S., Beitollahi, H., Shahsavari, M. et al. Voltammetric Determination of Ceftizoxime by a Carbon Paste Electrode Modified with Ionic Liquid and Cu (Him)2 Nanoparticles. Top Catal 65, 595–603 (2022). https://doi.org/10.1007/s11244-021-01469-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01469-2

Keywords

Navigation