Skip to main content

Advertisement

Log in

Ultra-Thin Red Phosphor Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution Under Visible Light

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

As a photocatalyst responding to visible light, red phosphorus has the advantages of cheap and easy availability, low toxicity and suitable band gap. In this work, ultra-thin red phosphorus (URP) with the narrower band gap through ultrasound for 8 h was successfully synthesized. Though a series of characterization (such as: XPS analysis, photoelectric response analysis, Raman analysis, AFM images, etc.), the narrow band gap and ultra-thin nanosheet structure could promote the generation of more photogenerated electrons and effectively improve the separation rate of photogenerated charges for highly efficient hydrogen evolution. URP showed the excellent photocatalytic hydrogen production without any cocatalysts (0.55 mmol g−1 h−1), which was 2.88 times for untreated red phosphorus. In addition, URP overcame the limited stability and decreased the band gap of red phosphorus, producing hydrogen at a rate of 0.16 mmol g−1 h−1 after three cycles. This readily available and ultra-thin material can be used as a substrate material for other materials due to its similar graphene thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Di J, Xiong J, Li H, Liu Z et al (2018) Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv Mater 30:1704548

    Article  Google Scholar 

  2. Zhang N, Yang MQ, Liu S et al (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377

    Article  CAS  Google Scholar 

  3. Luo B, Liu G, Wang L (2016) Recent advances in 2D materials for photocatalysis. Nanoscale 8:6904–6920

    Article  CAS  Google Scholar 

  4. Liu P, Zhao Y, Qin R et al (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–800

    Article  CAS  Google Scholar 

  5. Koutavarapu R, Reddy CV, Syed K et al (2021) Ultra-small zinc oxide nanosheets anchored onto sodium bismuth sulfide nanoribbons as solar-driven photocatalysts for removal of toxic pollutants and photoelectrocatalytic water oxidation. Chemosphere 267:128559

    Article  CAS  Google Scholar 

  6. Yang Y, Yang XA, Leng D et al (2018) Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr (VI) under visible light. Chem Eng J 335:491–500

    Article  CAS  Google Scholar 

  7. Shi W, Guo X, Cui C et al (2019) Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation. Appl Catal B 243:236–242

    Article  CAS  Google Scholar 

  8. She X, Wu J, Xu H et al (2017) High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv Energy Mater 7:1700025

    Article  Google Scholar 

  9. Yuan YJ, Shen Z, Wu S et al (2019) Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl Catal B 246:120–128

    Article  CAS  Google Scholar 

  10. Meng L, Wang S, Cao F et al (2019) Doping-induced amorphization, vacancy, and gradient energy band in SnS2 nanosheet arrays for improved photoelectrochemical water splitting. Angew Chem Int Ed 58:6761–6765

    Article  CAS  Google Scholar 

  11. Zhong Y, Shao Y, Ma F et al (2017) Band-gap-matched CdSe QD/WS2 nanosheet composite: size-controlled photocatalyst for high-efficiency water splitting. Nano Energy 31:3184–3189

    Article  Google Scholar 

  12. Li N, Wu J, Lu Y et al (2018) Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B 238:27–37

    Article  CAS  Google Scholar 

  13. Guo X, Guo P, Wang C et al (2020) Few-layer WSe2 nanosheets as an efficient cocatalyst for improved photocatalytic hydrogen evolution over Zn0.1Cd0.9S nanorods. Chem Eng J 383:123183

    Article  CAS  Google Scholar 

  14. Wu C, Jing L, Deng J et al (2021) Elemental red phosphorus-based photocatalysts for environmental remediation: a review. Chemosphere 274:129793

    Article  CAS  Google Scholar 

  15. Zhu Y, Ren J, Zhang X et al (2020) Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production. Nanoscale 12:13297–13310

    Article  CAS  Google Scholar 

  16. Mo J, Xu Y, Zhu L et al (2021) A cysteine-mediated synthesis of red phosphorus nanosheets. Angew Chem Int Ed. https://doi.org/10.1002/anie.202101486

    Article  Google Scholar 

  17. Zhu Y, Li J, Dong CL et al (2019) Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Appl Catal B 255:117764

    Article  CAS  Google Scholar 

  18. Liu J, Zhu Y, Chen J et al (2021) Visible-light driven rapid bacterial inactivation on red phosphorus/titanium oxide nanofiber heterostructures. J Hazard Mater 413:125462

    Article  CAS  Google Scholar 

  19. Zhou J, Liu X, Cai W et al (2017) Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv Mater 29:1700214

    Article  Google Scholar 

  20. Liu S, Xu H, Bian X et al (2018) Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries. ACS Nano 12:7380–7387

    Article  CAS  Google Scholar 

  21. Ren Z, Li D, Xue Q et al (2020) Facile fabrication nano-sized red phosphorus with enhanced photocatalytic activity by hydrothermal and ultrasonic method. Catal Today 340:115–120

    Article  CAS  Google Scholar 

  22. Xia D, Shen Z, Huang G et al (2015) Red phosphorus: an earth-abundant elemental photocatalyst for “Green” bacterial inactivation under visible light. Environ Sci Technol 49:6264–6273

    Article  CAS  Google Scholar 

  23. Liu F, Shi R, Wang Z et al (2019) Direct Z-Scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew Chem Int Ed 58:11791–11795

    Article  CAS  Google Scholar 

  24. Zaug JM, Soper AK, Clark SM et al (2008) Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks. Nat Mater 7:890–899

    Article  CAS  Google Scholar 

  25. Lu W, Nan H, Hong J et al (2014) Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res 7:853–859

    Article  CAS  Google Scholar 

  26. Zhang D, Wang P, Chen F et al (2020) In situ integration of efficient photocatalyst Cu1.8S/ZnxCd1-xS heterojunction derived from a metal-organic framework. Chin Chem Lett 31:2795–2798

    Article  CAS  Google Scholar 

  27. Edmonds MT, Tadich A, Carvalho A et al (2015) Creating a stable oxide at the surface of black phosphorus. ACS Appl Mater Int 7:14557–14562

    Article  CAS  Google Scholar 

  28. Duan B, Yang J, Salvador JR et al (2016) Electronegative guests in CoSb3. Energy Environ Sci 9:2090–2098

    Article  CAS  Google Scholar 

  29. Fuentez-Torres M, Ortiz-Chi F, Espinosa-González C et al (2021) Facile synthesis of Zn doped g-C3N4 for enhanced visible light driven photocatalytic hydrogen production. Top Catal 64:65–72

    Article  CAS  Google Scholar 

  30. Zhan H, Wanga Y, Mi X et al (2020) Effect of graphitic carbon nitride powders on adsorption removal of antibiotic resistance genes from water. Chin Chem Lett 31:2843–2848

    Article  CAS  Google Scholar 

  31. Li C, Fu M, Wang Y et al (2020) In situ synthesis of Co2P-decorated red phosphorus nanosheets for efficient photocatalytic H2 evolution. Catal Sci Technol 10:2221–2230

    Article  CAS  Google Scholar 

  32. Zhou Z, Li Y, Li Y et al (2020) Efficient removal for multiple pollutants via Ag2O/BiOBr heterojunction: a promoted photocatalytic process by valid electron transfer pathway. Chin Chem Lett 31:2698–2704

    Article  CAS  Google Scholar 

  33. Chen Y, Ji S, Sun W et al (2020) Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed 59:1295–1301

    Article  CAS  Google Scholar 

  34. Li J, Liu X, Tan L et al (2019) Light-activated rapid disinfection by accelerated charge transfer in red phosphorus/ZnO heterointerface. Small Methods 3:1900048

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22076082, 21874099 and 21872102), the Tianjin Commission of Science and Technology as key technologies R&D projects (Grant Nos. 18YFZCSF00730, 18YFZCSF00770, 18ZXSZSF00230, 19YFZCSF00740 and 20YFZCSN01070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhurui Shen or Sihui Zhan.

Ethics declarations

Conflict of interest

There are no competing interests to declare. All authors have approved the publication of the manuscript. And the authors declare that they have no known competing financial interests or personal relationships.

Ethical Approval

On behalf of my co-author, I would like to declare that the work described is original research and has not been published before, nor is it considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Mu, K., Zhang, D. et al. Ultra-Thin Red Phosphor Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution Under Visible Light. Top Catal 64, 559–566 (2021). https://doi.org/10.1007/s11244-021-01454-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01454-9

Keywords

Navigation