Skip to main content

Advertisement

Log in

Homogeneous Photocatalytic Hydrogen Evolution System with Assembly of CdSe Quantum Dots and Graphene Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrogen is a promising energy carrier to replace traditional fossil fuel and could be obtained by the artificial photosynthesis. Herein, a homogenous system combined CdSe quantum dots (QDs) and graphene oxide (GO) (GO/CdSe QDs) were prepared by simple ultrasonication and stirring method for highly efficient photocatalytic hydrogen evolution. Notably, the optimized photocatalytic H2 evolution rate reached as high as 33.88 mmol g−1 h−1 for GO/CdSe QDs, which is about 7.9 times than that of pure CdSe QDs. The X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) confirmed that the GO has been successfully coupled with CdSe QDs and has ignorable influence on the original crystal structure and morphology of CdSe QDs. Importantly, we found that the hydrophilicity of GO is necessary to ensure its intact interaction with CdSe QDs for the continuous H2 production. The significant activity enhancement mainly attributed to the acceleration of charge migration and dynamics of proton reduction after introducing GO, which has been proved by electrochemical measurements, photoluminescence spectroscopy (PL) and dynamic decay of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dong Y, Duchesne P, Mohan A, Ghuman KK, Kant P, Hurtado L, Ulmer U, Loh JYY, Tountas AA, Wang L, Jelle A, Xia M, Dittmeyer R, Ozin GA (2020) Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem Soc Rev 49:5648–5663

    Article  CAS  Google Scholar 

  2. Kammen DM, Sunter DA (2016) City-integrated renewable energy for urban sustainability. Science 352:922

    Article  CAS  PubMed  Google Scholar 

  3. Chen RJ, Li D, Fang ZY, Huang YY, Luo BF, Shi WD (2020) Controlling self-assembly of 3D In2O3 nanostructures for boosting photocatalytic hydrogen production. Acta Phys Chim Sin 36:1903047

    Article  Google Scholar 

  4. Cao Z, Dierks M, Clough MT, De Castro IBD, Rinaldi R (2018) A convergent approach for a deep converting lignin-first biorefinery rendering high-energy-density drop-in fuels. Joule 2:1118–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morris L, Hales JJ, Trudeau ML, Georgiev P, Embs JP, Eckert J, Kaltsoyannis N, Antonelli DM (2019) A manganese hydride molecular sieve for practical hydrogen storage under ambient conditions. Energy Environ Sci 12:1580–1591

    Article  CAS  Google Scholar 

  6. Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985

    Article  CAS  PubMed  Google Scholar 

  7. Kisch H (2013) Semiconductor photocatalysis-mechanistic and synthetic aspects. Angew Chem Int Ed 52:812–847

    Article  CAS  Google Scholar 

  8. Sun SC, Zhang XY, Liu XL, Pan ZXW, Zou JJ (2020) Design and construction of cocatalysts for photocatalytic water splitting. Acta Phys Chim Sin 36:1905007

    Article  Google Scholar 

  9. Zhu SS, Wang DW (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater 7:1700841

    Article  CAS  Google Scholar 

  10. Riente P, Fianchini M, Llanes P, Pericàs MA, Noël T (2021) Shedding light on the nature of the catalytically active species in photocatalytic reactions using Bi2O3 semiconductor. Nat Commun 12:625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parrino F, Palmisano G (2021) Highlights on recent developments of heterogeneous and homogeneous photocatalysis. Molecules 26:23

    Article  CAS  Google Scholar 

  12. Parrino F, Bellardita M, García-López EI, Marcì G, Loddo V, Palmisano L (2018) Heterogeneous photocatalysis for selective formation of high-value-added molecules: some chemical and engineering aspects. ACS Catal 8:11191–11225

    Article  CAS  Google Scholar 

  13. Guo Q, Ma ZB, Zhou CY, Ren ZF, Yang XM (2019) Single molecule photocatalysis on TiO2 surfaces. Chem Rev 119:11020–11041

    Article  CAS  PubMed  Google Scholar 

  14. Lang XJ, Chen XD, Zhao JC (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    Article  CAS  PubMed  Google Scholar 

  15. Dan M, Yu S, Li Y, Wei SQ, Xiang JL, Zhou Y (2020) Hydrogen sulfide conversion: how to capture hydrogen and sulfur by photocatalysis. J Photochem Photobiol, C 42:100339

    Article  CAS  Google Scholar 

  16. Fukuzumi S, Jung J, Yamada Y, Kojima T, Nam W (2016) Homogeneous and heterogeneous photocatalytic water oxidation by persulfate. Chem Asian J 11:1138–1150

    Article  CAS  PubMed  Google Scholar 

  17. Fukuzumi S, Hong D (2014) Homogeneous versus heterogeneous catalysts in water oxidation. Eur J Inorg Chem 2014:645–659

    Article  CAS  Google Scholar 

  18. Bergamini G, Natali M (2019) Homogeneous vs. heterogeneous catalysis for hydrogen evolution by a nickel(II) bis(diphosphine) complex. Dalton Trans 48:14653–14661

    Article  CAS  PubMed  Google Scholar 

  19. Yuan Y-J, Yu Z-T, Zou C-Q, Z-G, (2017) Metal-complex chromophores for solar hydrogen generation. Chem Soc Rev 46:603–631

    Article  CAS  PubMed  Google Scholar 

  20. Lehn J-M, Sauvage J-P (1977) Chemical storage of light energy catalytic generation of hydrogen by visible light or sunlight. Irradiation of neutral aqueous solutions. Nouv J Chim 1:449–451

    CAS  Google Scholar 

  21. Kirch M, Lehn J-M, Sauvage J-P (1979) Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy. Helv Chim Acta 62:1345–1384

    Article  CAS  Google Scholar 

  22. Cline ED, Adamson SE, Bernhard S (2008) Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg Chem 47:10378–10388

    Article  CAS  PubMed  Google Scholar 

  23. Zhang BB, Sun LC (2019) Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 48:2216–2264

    Article  CAS  PubMed  Google Scholar 

  24. Ozawa H, Kobayashi M, Balan B, Masaoka S, Sakai K (2010) Photo-hydrogen-evolving molecular catalysts consisting of polypyridyl ruthenium(II) photosensitizers and platinum(II) catalysts: insights into the reaction mechanism. Chemistry Asian J 5:1860–1869

    Article  CAS  Google Scholar 

  25. Yu S, Fan X-B, Wang X, Li JG, Zhang Q, Xia AD, Wei SQ, Wu L-Z, Zhou Y, Patzke GR (2018) Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun 9:4009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Jensen SC, Bettis HS, Weiss EA (2016) Photocatalytic conversion of nitrobenzene to aniline through sequential proton-coupled one-electron transfers from a cadmium sulfide quantum Dot. J Am Chem Soc 138:1591–1600

    Article  CAS  PubMed  Google Scholar 

  27. Rempel AA, Kuznetsova YV, Dorosheva IB, Valeeva AA, Weinstein IA, Kozlova EA, Saraev AA, Selishchev DS (2020) High photocatalytic activity under visible light of sandwich structures based on anodic TiO2/CdS nanoparticles/Sol–Gel TiO2. Top Catal 63:130–138

    Article  CAS  Google Scholar 

  28. Greene BL, Joseph CA, Maroney MJ, Dyer RB (2012) Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J Am Chem Soc 134:11108–11111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang JE, Huang ZQ, Yang Y, Zhu HM, Lian TQ (2010) Multiple exciton dissociation in cdse quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864

    Article  CAS  PubMed  Google Scholar 

  30. Li C-B, Li Z-J, Yu S, Wang G-X, Wang F, Meng Q-Y, Chen B, Feng K, Tung C-H, Wu L-Z (2013) Interface-directed assembly of a simple precursor of [FeFe]-H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ Sci 6:2597–2602

    Article  CAS  Google Scholar 

  31. Wang F, Liang W-J, Jian J-X, Li C-B, Chen B, Tung C-H, Wu L-Z (2013) Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew Chem Int Ed 52:8134–8138

    Article  CAS  Google Scholar 

  32. Jian J-X, Ye C, Wang X-Z, Wen M, Li Z-J, Li X-B, Chen B, Tung C-H, Wu L-Z (2016) Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution. Energy Environ Sci 9:2083–2089

    Article  CAS  Google Scholar 

  33. Yu S, Li Z-J, Fan X-B, Li J-X, Zhan F, Li X-B, Tao Y, Tung C-H, Wu L-Z (2015) Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated cdse quantum-dots-TiO2-Ni(OH)2 assembly. Chemsuschem 8:642–649

    Article  CAS  PubMed  Google Scholar 

  34. Wan WC, Zhang RY, Li W, Liu H, Lin YH, Li LN, Zhou Y (2016) Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ Sci Nano 3:107–113

    Article  CAS  Google Scholar 

  35. Pei SF, Wei QW, Huang K, Cheng H-M, Ren WC (2018) Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat Commun 9:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Valencia C, Valencia CH, Zuluaga F, Valencia ME, Mina JH, Grande-Tovar CD (2018) Synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration. Molecules 23:2651

    Article  PubMed Central  CAS  Google Scholar 

  37. Abbas SS, Rees GJ, Kelly NL, Dancer CEJ, Hanna JV, McNally T (2018) Facile silane functionalization of graphene oxide. Nanoscale 10:16231–16242

    Article  CAS  PubMed  Google Scholar 

  38. Chen WW, Yu S, Zhong YQ, Fan X-B, Wu L-Z, Zhou Y (2018) Effect of electron transfer on the photocatalytic hydrogen evolution efficiency of faceted TiO2/CdSe QDs under visible light. New J Chem 42:4811–4817

    Article  CAS  Google Scholar 

  39. Zhong YQ, Chen WW, Yu S, Xie ZH, Wei SQ, Zhou Y (2018) CdSe quantum dots/g-C3N4 heterostructure for efficient H2 production under visible light irradiation. ACS Omega 3:17762–17769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dan M, Xiang JL, Wu F, Yu S, Cai Q, Ye LQ, Ye YH, Zhou Y (2019) Rich active-edge-site MoS2 anchored on reduction sites in metal sulfide heterostructure: toward robust visible light photocatalytic hydrogen sulphide splitting. Appl Catal B 256:117870

    Article  CAS  Google Scholar 

  41. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  42. Jabbar A, Yasin G, Khan WQ, Anwar MY, Korai RM, Nizam MN, Muhyodin G (2017) Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv 7:31100–31109

    Article  CAS  Google Scholar 

  43. Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J Phys Chem C 114:12955–12959

    Article  CAS  Google Scholar 

  44. Kim WD, Kim J-H, Lee S, Lee S, Woo JY, Lee K, Chae W-S, Jeong S, Bae WK, McGuire JA, Moon JH, Jeong MS, Lee DC (2016) Role of surface states in photocatalysis: study of chlorine-passivated CdSe nanocrystals for photocatalytic hydrogen generation. Chem Mater 28:962–968

    Article  CAS  Google Scholar 

  45. Yu S, Wu F, Zou PK, Fan X-B, Duan C, Dan M, Xie ZH, Zhang Q, Zhang FY, Zheng H, Zhou Y (2020) Highly value-added utilization of H2S in Na2SO3 solution over Ca-CdS nanocrystal photocatalysts. Chem Commun 56:14227–14230

    Article  CAS  Google Scholar 

  46. Cao YH, Zheng Q, Rao ZQ, Zhang RY, Xie ZH, Yu S, Zhou Y (2020) InP quantum dots on g-C3N4 nanosheets to promote molecular oxygen activation under visible light. Chin Chem Lett 31:2689–2692

    Article  CAS  Google Scholar 

  47. Fan X-B, Yu S, Wang X, Li Z-J, Zhan F, Li J-X, Gao Y-j, Xia A-D, Tao Y, Li X-B, Zhang L-P, Tung C-H, Wu L-Z (2019) Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration. Adv Mater 31:1804872

    Article  CAS  Google Scholar 

  48. Yu S, Xie ZH, Ran MX, Wu F, Zhong YQ, Dan M, Zhou Y (2020) Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. J Colloid Interface Sci 573:71–77

    Article  CAS  PubMed  Google Scholar 

  49. Wu F, Zhao ZY, Li BX, Dong F, Zhou Y (2020) Interfacial oxygen vacancy of Bi2O2CO3/PPy and its visible-light photocatalytic NO oxidation mechanism. J Inorg Mater 35:541–548

    Article  Google Scholar 

  50. Wanng HJ, Zhang J, Wang P, Yin LL, Tian Y, Li JJ (2020) Bifunctional copper modified graphitic carbon nitride catalysts for efficient tetracycline removal: synergy of adsorption and photocatalytic degradation. Chin Chem Lett 31:2789–2794

    Article  CAS  Google Scholar 

  51. Bang J, Das S, Yu EJ, Kim K, Lim H, Kim S, Hong JW (2020) Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: a new prototype for the visible-light photocatalytic hydrogen evolution reaction. Nano Lett 20:6263–6271

    Article  CAS  PubMed  Google Scholar 

  52. Chen C-J, Chen P-T, Basu M, Yang K-C, Lu Y-R, Dong C-L, Ma C-G, Shen C-C, Hu S-F, Liu R-S (2015) An integrated cobalt disulfide (CoS2) co-catalyst passivation layer on silicon microwires for photoelectrochemical hydrogen evolution. J Mater Chem A 3:23466–23476

    Article  CAS  Google Scholar 

  53. Min SX, Lu GX (2012) Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. J Phys Chem C 116:25415–25424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (U1862111 and 22002123), Cheung Kong Scholars Programme of China and Chinese Academic of Science “light of west China” Program, Provincial International Cooperation Project 2020YFH0118, Sichuan, China, Open Fund (PLN201802 and 201928) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Yu or Ying Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Research Involving Human and/or Animal Participants

There were no human or animal subjects involved in this research.

Informed Consent

The authors state that the manuscript has not been published or submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Yu, S., Zhong, Y. et al. Homogeneous Photocatalytic Hydrogen Evolution System with Assembly of CdSe Quantum Dots and Graphene Oxide. Top Catal 64, 567–575 (2021). https://doi.org/10.1007/s11244-021-01439-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01439-8

Keywords

Navigation