Abstract
Direct CO2 conversion to light olefins offers a chance to reduce CO2 emission with generating the revenue. However, a lack of efficient catalysts is a barrier for promoting this technology to an industrial scale. Here, we report a new catalytic system using a composite catalyst containing In2O3/SAPO-34 and Fe-Co/K-Al2O3 to enhance the light olefins yield. The effect of catalysts bed configuration including a physical mixture of In2O3/SAPO-34 with Fe-Co/K-Al2O3 (M-InS/Fe-Co), a dual-layer packing of In2O3/SAPO-34 followed by Fe-Co/K-Al2O3 (T-InS/B-FeCo) and a dual-layer packing of Fe-Co/K-Al2O3 above In2O3/SAPO-34 (T-FeCo/B-InS) is investigated. The M-InS/Fe-Co and T-FeCo/B-InS catalysts show a light olefins yield of 11.5 and 16.2% which are lower than that (18.9%) of the single Fe-Co/K-Al2O3 catalyst. A drastic reduction in the BET surface area (42 m2 g−1) of M-InS/Fe-Co catalyst compared to its theoretical value of 198 m2 g−1 is observed, suggesting the pores blockage. The T-InS/B-FeCo composite catalyst achieves a state-of the art light olefins yield of 21.5% due to a selective CO2 conversion to light olefins over In2O3/SAPO-34 and a highly active CO2 conversion to hydrocarbon over Fe-Co/K-Al2O3 which further converts the remaining CO2 from the former catalyst bed to light olefins and other hydrocarbon products until equilibrium CO2 conversion is reached.
Similar content being viewed by others
References
Zhao Z, Jiang J, Wang F (2021) J Energy Chem 56:193–202. https://doi.org/10.1016/j.jechem.2020.04.021
Kim KY, Lee H, Noh WY, Shin J, Han SJ, Kim SK, An K, Lee JS (2020) ACS Catal 10(15):8660–8671. https://doi.org/10.1021/acscatal.0c01417
Wang Y, Li HX, Li XG, Chen D, Xiao WD (2020) Ind Eng Chem Res 59(25):11462–11474. https://doi.org/10.1021/acs.iecr.0c01603
Fakhroleslam M, Sadrameli SM (2020) Ind Eng Chem Res 59(27):12288–12303. https://doi.org/10.1021/acs.iecr.0c00923
Che Y, Yuan M, Qiao Y, Liu Q, Zhang J, Tian Y (2019) Fuel 237:1–9. https://doi.org/10.1016/j.fuel.2018.09.088
Al-Khattaf SS, Ali SA (2018) Energy Fuels 32(2):2234–2244. https://doi.org/10.1021/acs.energyfuels.7b04045
Kang JH, Alshafei FH, Zones SI, Davis ME (2019) ACS Catal 9(7):6012–6019. https://doi.org/10.1021/acscatal.9b00746
García-Ruiz M, Solís-Casados DA, Aguilar-Pliego J, Márquez-Álvarez C, Sastre-de Andrés E, Sanjurjo-Tartalo D, Sáinz-Vaque R, Grande-Casas M (2020) Top Catal 63:451–467. https://doi.org/10.1007/s11244-020-01242-x
Wang S, Wang P, Qin Z, Chen Y, Dong M, Li J, Zhang K, Liu P, Wang J, Fan W (2018) ACS Catal 8(6):5485–5505. https://doi.org/10.1021/acscatal.8b01054
Santos VP, Pollefeyt G, Yancey DF, Ciftci Sandikci A, Vanchura B, Nieskens DLS, de Kok-Kleiberg M, Kirilin A, Chojecki A, Malek A (2020) J Catal 381:108–120. https://doi.org/10.1016/j.jcat.2019.08.027
Xing Y, Jia G, Liu Z, Fang S, Zhao C, Guo X, Suib SL (2019) ChemCatChem 11(14):3187–3199. https://doi.org/10.1002/cctc.201900023
Gong K, Lin T, An Y, Wang X, Yu F, Wu B, Li X, Li S, Lu Y, Zhong L, Sun Y (2020) Appl Catal A 592:117414. https://doi.org/10.1016/j.apcata.2020.117414
Pirro L, Obradović A, Vandegehuchte BD, Marin GB, Thybaut JW (2018) Ind Eng Chem Res 57(48):16295–16307. https://doi.org/10.1021/acs.iecr.8b04242
Spallina V, Velarde IC, Jimenez JAM, Godini HR, Gallucci F, Van Sint AM (2017) Energy Convers Manag 154:244–261. https://doi.org/10.1016/j.enconman.2017.10.061
Zhang Z, Wei C, Jia L, Liu Y, Sun C, Wang P, Tu W (2020) J Catal 390:12–22. https://doi.org/10.1016/j.jcat.2020.07.020
Numpilai T, Chanlek N, Poo-Arporn Y, Cheng CK, Siri-Nguan N, Sornchamni T, Chareonpanich M, Kongkachuichay P, Yigit N, Rupprechter G, Limtrakul J, Witoon T (2020) ChemCatChem 12:3306–3320. https://doi.org/10.1002/cctc.202000347
Chaipraditgul N, Numpilai T, Cheng CK, Siri-Nguan N, Sornchamni T, Wattanakit C, Limtrakul J, Witoon T (2021) Fuel 238:119248. https://doi.org/10.1016/j.fuel.2020.119248
Shi Z, Tan Q, Wu D (2019) Appl Catal A 581:58–66. https://doi.org/10.1016/j.apcata.2019.05.019
Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonapanich M, Limtrakul J (2018) Chem Eng J 334:1781–1791. https://doi.org/10.1016/j.cej.2017.11.117
Tada S, Fujiwara K, Yamamura T, Nishijima M, Uchida S, Kikuchi R (2020) Chem Eng J 381:122750. https://doi.org/10.1016/j.cej.2019.122750
Frei MS, Mondelli C, Cesarini A, Krumeich F, Hauert R, Stewart JA, Ferré DC, Pérez-Ramírez J (2020) ACS Catal 10(2):1133–1145. https://doi.org/10.1021/acscatal.9b03305
Chou CY, Lobo RF (2019) Appl Catal A 583:117144. https://doi.org/10.1016/j.apcata.2019.117144
Akkharaphatthawon N, Chanlek N, Cheng CK, Chareonpanich M, Limtrakul J, Witoon T (2019) Appl Surf Sci 489:278–286. https://doi.org/10.1016/j.apsusc.2019.05.363
Wang X, Wang Y, Yang C, Yi Y, Wang X, Liu F, Cao J, Pan H (2020) Appl Catal A 595:117507. https://doi.org/10.1016/j.apcata.2020.117507
Temvuttirojn C, Poo-arporn Y, Chanlek N, Cheng CK, Chong CC, Limtrakul J, Witoon T (2020) Ind Eng Chem Res 59:5525–5535. https://doi.org/10.1021/acs.iecr.9b05691
Wu X-K, Xia G-J, Huang Z, Rai DK, Zhao H, Zhang J, Yun J, Wang Y-G (2020) Appl Surf Sci 525:146481. https://doi.org/10.1016/j.apsusc.2020.146481
Ahmad MS, Cheng CK, Bhuyar P, Atabani AE, Pugazhendhi A, Chi NTL, Witoon T, Lim JW, Juan JC (2021) Fuel 283:118851. https://doi.org/10.1016/j.fuel.2020.118851
Numpilai T, Wattanakit C, Chareonpanich M, Limtrakul J, Witoon T (2019) Energy Convers Manag 180:511–523. https://doi.org/10.1016/j.enconman.2018.11.011
Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) Appl Catal B Environ 152–153:152–161. https://doi.org/10.1016/j.apcatb.2014.01.035
Chen J, Wang X, Wu D, Zhang J, Ma Q, Gao X, Lai X, Xia H, Fan S, Zhao T-S (2019) Fuel 239:44–52. https://doi.org/10.1016/j.fuel.2018.10.148
Jia X, Sun K, Wang J, Shen C, Liu CJ (2020) J Energy Chem 50:409–415. https://doi.org/10.1016/j.jechem.2020.03.083
Numpilai T, Chanlek N, Poo-Arporn Y, Wannapaiboon S, Cheng CK, Siri-Nguan N, Sornchamni T, Kongkachuichay P, Chareonpanich M, Rupprechter G, Limtrakul J, Witoon T (2019) Appl Surf Sci 483:581–592. https://doi.org/10.1016/j.apsusc.2019.03.331
Ma Z, Zhou C, Wang D, Wang Y, He W, Tan Y, Liu Q (2019) J Catal 378:209–219. https://doi.org/10.1016/j.jcat.2019.08.037
Wang H, Wang J, Yuan Y, Zhao Q, Teng X, Huang S, Ma X (2018) Catal Today 314:101–106. https://doi.org/10.1016/j.cattod.2018.01.006
Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) J CO2 Util 3–4:102–106. https://doi.org/10.1016/j.jcou.2013.10.002
Liu B, Geng S, Zheng J, Jia X, Jiang F, Liu X (2018) ChemCatChem 10:4718–4732. https://doi.org/10.1002/cctc.201800782
Wei C, Tu W, Jia L, Liu Y, Lian H, Wang P, Zhang Z (2020) Appl Surf Sci 525:146622. https://doi.org/10.1016/j.apsusc.2020.146622
Dong Z, Zhao J, Tian Y, Zhang B, Wu Y (2020) Catalysts 10:455. https://doi.org/10.3390/catal10040455
Jiang F, Liu B, Geng S, Xu Y, Liu X (2018) Catal Sci Technol 8:4097–4107. https://doi.org/10.1039/C8CY00850G
Liu J, Sun Y, Jiang X, Zhang A, Song C, Guo X (2018) J CO2 Util 25:120–127. https://doi.org/10.1016/j.jcou.2018.03.015
Zhang J, Su X, Wang X, Ma Q, Fan S, Zhao TS (2018) React Kinet Mech Catal 124:575–585. https://doi.org/10.1007/s11144-018-1377-1
Jiang J, Wen C, Tian Z, Wang Y, Zhai Y, Chen L, Li Y, Liu Q, Wang C, Ma L (2020) Ind Eng Chem Res 59:2155–2162. https://doi.org/10.1021/acs.iecr.9b05342
Liu J, Zhang A, Jiang X, Zhang G, Sun Y, Liu M, Ding F, Song C, Guo X (2019) Ind Eng Chem Res 58:4017–4023. https://doi.org/10.1021/acs.iecr.8b05478
Liang B, Sun T, Ma J, Duan H, Li L, Yang X, Zhang Y, Su X, Huang Y, Zhang T (2019) Catal Sci Technol 9:456–464. https://doi.org/10.1039/C8CY02275E
Wang J, You Z, Zhang Q, Deng W, Wang Y (2013) Catal Today 215:186–193. https://doi.org/10.1016/j.cattod.2013.03.031
Wei J, Sun J, Wen Z, Fang C, Ge Q, Xu H (2016) Catal Sci Technol 6:4786–4793. https://doi.org/10.1039/C6CY00160B
Zhang J, Lu S, Su X, Fan S, Ma Q, Zhao T (2015) J CO2 Util 12:95–100. https://doi.org/10.1016/j.jcou.2015.05.004
Li Z, Wang J, Qu Y, Liu H, Tang C, Miao S, Feng Z, An H, Li C (2017) ACS Catal 7:8544–8548. https://doi.org/10.1021/acscatal.7b03251
Dang S, Gao P, Liu Z, Chen X, Yang C, Wang H, Zhong L, Li S, Sun Y (2018) J Catal 364:382–393. https://doi.org/10.1016/j.jcat.2018.06.010
Dang S, Li S, Yang C, Chen X, Li X, Zhong L, Gao P, Sun Y (2019) Chemsuschem 12:3582–3591. https://doi.org/10.1002/cssc.201900958
Liu X, Wang M, Zhou C, Zhou W, Cheng K, Kang J, Zhang Q, Deng W, Wang Y (2017) Chem Commun 54:140–143. https://doi.org/10.1039/C7CC08642C
Acknowledgements
This research was supported in part by the Thailand Research Fund and the Kasetsart University (grant no. RSA6280007), the Center of Excellence on Petrochemical and Materials Technology (PETROMAT), the Nanotechnology Center (NANOTEC), NSTDA, the Ministry of Science and Technology, Thailand, through its program of Research Network of NANOTEC (RNN), the Postdoctoral Fellowship from Vidyasirimedhi Institute of Science and Technology, the Kasetsart University Research and Development Institute (KURDI) through its program of Development of Advance Researcher Competence System for Competitiveness in Agriculture and Food (FF(KU) 25.64), the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (B05F630097) and TTSF research project supported by Thailand Toray Science Foundation
Author information
Authors and Affiliations
Contributions
TN investigation, validation, writing-reviewing and editing. SK writing-reviewing and editing. TW conceptualization, methodology, writing-original draft preparation, writing-reviewing and editing. BVA visualization, writing-reviewing and editing. CKC visualization, writing-reviewing and editing. NSN validation. TS funding acquisition. CW visualization, writing-reviewing and editing. MC visualization, writing-reviewing and editing. JL supervision.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Numpilai, T., Kahadit, S., Witoon, T. et al. CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst. Top Catal 64, 316–327 (2021). https://doi.org/10.1007/s11244-021-01412-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11244-021-01412-5