Skip to main content
Log in

Assessment of the Use of NaClO as an Alternative to H2O2 in the Oxidant-Titanium Ore-Simulated Solar Light System for Thiabendazole Degradation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The use of the magnetic fraction (MF) of a low-grade titanium ore (TO) and two oxidants (H2O2 and NaClO), testing each one separately, were compared in photo-Fenton like systems to degrade thiabendazole (TBZ) as a model micropollutant. As far as the author’s knowledge goes, this work presents for the first time the assessment of NaClO as an alternative to H2O2 in heterogeneous systems, where the Fenton-type photocatalyst is a natural mineral; TO has a Mexican origin and its magnetic fraction is mainly composed of Ilmenite (47.8% w/w FeTiO3). The experiments were carried out at bench scale in a solar simulator, using a batch raceway pond reactor. Oxidant and MF concentrations were optimized by a composite experimental design, which allowed to achieve 97% TBZ degradation at 15 and 30 min for NaClO and H2O2 systems, respectively, when the initial concentration of TBZ was 37 µM. Pointing out that both pseudo-first order rate constants (\(k^{\prime}\)), \(k_{NaClO}^{^{\prime}}\) = 0.226 min−1 and \(k_{{H_{2} O_{2} }}^{^{\prime}}\) = 0.065 min−1, are in the order of homogeneous photo-Fenton applied to degrade TBZ; however, the time to achieve the same level of TBZ degradation is halved when NaClO is used instead of H2O2, thus the capacity of treatment plants can be increased. Furthermore, better results of mineralization (54%), DQO (76%), DBO5 (44%) and acute toxicity (74%) removal were observed when NaClO was used as an oxidant compared to H2O2, whose values were 42, 67, 38 and 58% for the parameters aforementioned. These positive results demonstrate the feasibility of the use of NaClO as an alternative oxidant to H2O2 in the heterogeneous photo Fenton like process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gogoi A, Mazumder P, Tyagi VK et al (2018) Occurrence and fate of emerging contaminants in water environment: A review. Groundw Sustain Dev 6:169–180. https://doi.org/10.1016/J.GSD.2017.12.009

    Article  Google Scholar 

  2. Kong L, Kadokami K, Wang S et al (2015) Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China. Chemosphere 122:125–130. https://doi.org/10.1016/j.chemosphere.2014.11.025

    Article  CAS  PubMed  Google Scholar 

  3. Luo Y, Guo W, Ngo HH et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

    Article  CAS  PubMed  Google Scholar 

  4. Meffe R, de Bustamante I (2014) Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Sci Total Environ 481:280–295

    Article  CAS  Google Scholar 

  5. Stamm C, Räsänen K, Burdon FJ et al (2016) Unravelling the impacts of micropollutants in aquatic ecosystems: interdisciplinary studies at the interface of large-scale ecology. In: Dumbrell AJ, Kordas RL, Woodward G (eds) Advances in ecological research, first. Elsevier, Amsterdam, pp 183–223

    Google Scholar 

  6. Fischer A, ter Laak T, Bronders J et al (2017) Decision support for water quality management of contaminants of emerging concern. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.02.002

    Article  Google Scholar 

  7. Galindo-Miranda JM, Guízar-González C, Becerril-Bravo EJ et al (2019) Occurrence of emerging contaminants in environmental surface waters and their analytical methodology—a review. Water Sci Technol Water Supply 19:1871–1884. https://doi.org/10.2166/ws.2019.087

    Article  Google Scholar 

  8. Toze S, Develop U (2008) Australian guidelines for water recycling

  9. De la Cruz N, Esquius L, Grandjean D et al (2013) Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res 47:5836–5845. https://doi.org/10.1016/j.watres.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  10. FOEN (2011) Swiss Federal Office for the Environment. Wastewater Treatment Measures to Reduce Micropollutants. In: Furth. Action Newsl. n. 9. https://www.bafu.admin.ch/gewaesserschutz/03716/11218/index.html?lang1⁄4enOctober 14th, 2011

  11. European Parliament and of the Council (2000) DIRECTIVE 2000/60 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2000. Off. J. Eur. Communities

  12. Guillossou R, Le Roux J, Mailler R et al (2019) Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment? Chemosphere 218:1050–1060. https://doi.org/10.1016/J.CHEMOSPHERE.2018.11.182

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Tian Z, Huo Y et al (2018) Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J Environ Sci (China) 67:309–317. https://doi.org/10.1016/j.jes.2017.09.014

    Article  Google Scholar 

  14. Giannakis S, Gamarra Vives FA, Grandjean D et al (2015) Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Res 84:295–306. https://doi.org/10.1016/J.WATRES.2015.07.030

    Article  CAS  PubMed  Google Scholar 

  15. Taheran M, Naghdi M, Brar SK et al (2018) Emerging contaminants: Here today, there tomorrow! Environ Nanotechnol Monit Manag 10:122–126

    Google Scholar 

  16. Bui XT, Vo TPT, Ngo HH et al (2016) Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 563–564:1050–1067. https://doi.org/10.1016/j.scitotenv.2016.04.191

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Zhu R, Xi Y, Zhu J, Zhu G, He H (2019) Strategies for enhancing the heterogeneous fenton catalytic reactivity: a review. Appl Catal B 255:117739

    Article  CAS  Google Scholar 

  18. Bello MM, Abdul Raman AA, Asghar A (2019) A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf Environ Prot 126:119–140. https://doi.org/10.1016/J.PSEP.2019.03.028

    Article  CAS  Google Scholar 

  19. Rizzo L, Malato S, Antakyali D et al (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008. https://doi.org/10.1016/J.SCITOTENV.2018.11.265

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed MB, Zhou JL, Ngo HH et al (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298. https://doi.org/10.1016/J.JHAZMAT.2016.04.045

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Pérez JA, Arzate S, Soriano-Molina P et al (2020) Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors. Sci Total Environ 736:139681. https://doi.org/10.1016/j.scitotenv.2020.139681

    Article  CAS  PubMed  Google Scholar 

  22. Carra I, Santos-Juanes L, Gabriel F et al (2014) New approach to solar photo-Fenton operation. Raceway ponds as tertiary treatment technology. J Hazard Mater 279:322–329. https://doi.org/10.1016/j.jhazmat.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Belalcázar-Saldarriaga A, Prato-Garcia D, Vasquez-Medrano R (2018) Photo-Fenton processes in raceway reactors: Technical, economic, and environmental implications during treatment of colored wastewaters. J Clean Prod 182:818–829. https://doi.org/10.1016/J.JCLEPRO.2018.02.058

    Article  Google Scholar 

  24. Cabrera-Reina A, Miralles-Cuevas S, Rivas G, Sánchez Pérez JA (2019) Comparison of different detoxification pilot plants for the treatment of industrial wastewater by solar photo-Fenton: are raceway pond reactors a feasible option? Sci Total Environ 648:601–608. https://doi.org/10.1016/J.SCITOTENV.2018.08.143

    Article  CAS  PubMed  Google Scholar 

  25. Jorquera O, Kiperstok A, Sales EA et al (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

    Article  CAS  PubMed  Google Scholar 

  26. Ziembowicz S, Kida M, Koszelnik P (2019) Reservoir bottom sediments as heterogeneous catalysts for effective degradation of a selected endocrine-disrupting chemical via a Fenton-like process. J Water Process Eng 32:100950. https://doi.org/10.1016/j.jwpe.2019.100950

    Article  Google Scholar 

  27. Clarizia L, Russo D, Di Somma I et al (2017) Homogeneous photo-Fenton processes at near neutral pH: a review. Appl Catal B 209:358–371. https://doi.org/10.1016/j.apcatb.2017.03.011

    Article  CAS  Google Scholar 

  28. Raizada P, Sudhaik A, Singh P et al (2019) Ag3PO4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation. J Photochem Photobiol A 374:22–35. https://doi.org/10.1016/j.jphotochem.2019.01.015

    Article  CAS  Google Scholar 

  29. Sonu DV, Sharma S et al (2019) Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J Saudi Chem Soc 23:1119–1136. https://doi.org/10.1016/j.jscs.2019.07.003

    Article  CAS  Google Scholar 

  30. Singh P, Shandilya P, Raizada P et al (2020) Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab J Chem 13:3498–3520. https://doi.org/10.1016/j.arabjc.2018.12.001

    Article  CAS  Google Scholar 

  31. Kumar A, Raizada P, Singh P et al (2019) Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Elsevier, Amsterdam

    Google Scholar 

  32. Arzate-Salgado S-Y, Morales-Pérez A-A, Solís-López M, Ramírez-Zamora R-M (2016) Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: Diclofenac. In: Catalysis today. Elsevier, Amsterdam, pp 126–135

  33. Solís-López M, Durán-Moreno A, Rigas F et al (2014) Assessment of copper slag as a sustainable fenton-type photocatalyst for water disinfection. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  34. López-Vásquez A, Colina JA, Machuca-Martínez F (2020) Experimental dataset on preparation and characterization of black sand mineral-based as photocatalyst. Data Br. https://doi.org/10.1016/j.dib.2020.105373

    Article  Google Scholar 

  35. Ibatá Soto A, Agudelo Valencia RN, López Vásquez AF (2018) Effect of pH and temperature on photocatalytic oxidation of methyl orange using black sand as photocatalyst. Rev Mutis 8:43–54

    Article  Google Scholar 

  36. Macías-Vargas J-A, Zanella R, Ramírez-Zamora R-M (2020) Degradation of ciprofloxacin using a low-grade titanium ore, persulfate, and artificial sunlight. Environ Sci Pollut Res 27:28623–28635. https://doi.org/10.1007/s11356-020-08293-3

    Article  CAS  Google Scholar 

  37. Sharma R, Kumar V, Bansal S, Singhal S (2015) Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process. J Mol Catal A. https://doi.org/10.1016/j.molcata.2015.03.009

    Article  Google Scholar 

  38. Usman M, Cheema SA, Farooq M (2020) Heterogeneous Fenton and persulfate oxidation for treatment of landfill leachate: a review supplement. J Clean Prod

  39. Behin J, Akbari A, Mahmoudi M, Khajeh M (2017) Sodium hypochlorite as an alternative to hydrogen peroxide in Fenton process for industrial scale. Water Res 121:120–128. https://doi.org/10.1016/j.watres.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  40. Kałuzna-Czaplińska J, Gutowska A, Jóźwiak WK et al (2010) The chemical degradation of C.I. Acid Brown 349 in aqueous solution using hydrogen peroxide and sodium hypochlorite and its implications for biodegradation. Dye Pigment 87:62–68. https://doi.org/10.1016/j.dyepig.2010.02.005

    Article  CAS  Google Scholar 

  41. Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66:86–91. https://doi.org/10.1016/j.talanta.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  42. Almanza R, López S (1978) Total solar radiation in Mexico using sunshine hours and meteorological data. Sol Energy 21(5):441–448

    Article  Google Scholar 

  43. Yuranova T, Enea O, Mielczarski E et al (2004) Fenton immobilized photo-assisted catalysis through a Fe/C structured fabric. Appl Catal B Environ 49:39–50. https://doi.org/10.1016/j.apcatb.2003.11.008

    Article  CAS  Google Scholar 

  44. Myer RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiment, 2nd edn. Wiley, New York

    Google Scholar 

  45. Sekimoto H, Yahaba S, Chiba S, Yamaguchi K (2016) New separation technique of titanium and iron for titanium ore upgrading. In: Proceedings of the 13th World Conference Titan 159–163. https://doi.org/10.1002/9781119296126.ch24

  46. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: Recent advances and applications. Catalysts 3:189–218. https://doi.org/10.3390/catal3010189

    Article  CAS  Google Scholar 

  47. Omri A, Hamza W, Benzina M (2020) Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst. J Photochem Photobiol A Chem 393:1–14. https://doi.org/10.1016/j.jphotochem.2020.112444

    Article  CAS  Google Scholar 

  48. Bin LR, Lee KM, Lai CW et al (2018) The relationship between iron and Ilmenite for photocatalyst degradation. Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.04.013

    Article  Google Scholar 

  49. Bin LR, Juan JC, Lai CW, Lee KM (2017) Ilmenite: Properties and photodegradation kinetic on Reactive Black 5 dye. Chinese Chem Lett. https://doi.org/10.1016/j.cclet.2017.03.006

    Article  Google Scholar 

  50. García-Muñoz P, Pliego G, Zazo JA et al (2016) Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2015.11.037

    Article  Google Scholar 

  51. Ruales-Lonfat C, Barona JF, Sienkiewicz A et al (2015) Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH. Appl Catal B Environ 166–167:497–508. https://doi.org/10.1016/j.apcatb.2014.12.007

    Article  CAS  Google Scholar 

  52. Truong QD, Liu J-Y, Chung C-C, Ling Y-C (2012) Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal Commun 19:85–89. https://doi.org/10.1016/j.catcom.2011.12.025

    Article  CAS  Google Scholar 

  53. Li C-J, Wang J-N, Wang B, Gong J, Ru; Lin Z, (2012) A Novel Magnetically Separable TiO2/CoFe2O4 Nanofiber With High Photocatalytic Activity Under UV-Vis Light. Mater Res Bull 47:333–337. https://doi.org/10.1016/j.materresbull.2011.11.012

    Article  CAS  Google Scholar 

  54. Mehdilo, Akbar; Irannajad, Mehdi; Rezai B (2015) Chemical and mineralogical composition of ilmenite: Effects on physical and surface properties. Miner Eng 70:64–76

  55. Xia D, He H, Liu H, Wang Y, Zhang Q, Li Y, Lu A, He C, Wong PK (2018) Persulfate-mediated catalytic and photocatalytic bacterial inactivation by magnetic natural ilmenite. Appl Catal B 238:70–81

    Article  CAS  Google Scholar 

  56. Raizada P, Kumari J, Shandilya P, Singh P (2017) Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported zno/znwo4 nanocomposite in simulated wastewater. Desalin Water Treat 79:204–213. https://doi.org/10.5004/dwt.2017.20831

    Article  CAS  Google Scholar 

  57. Leland JK, Bard AJ (1987) Photochemistry of colloidal semiconducting iron oxide polymorphs. J Phys Chem 91:5076–5083. https://doi.org/10.1021/j100303a039

    Article  CAS  Google Scholar 

  58. Hasija V, Sudhaik A, Raizada P et al (2019) Carbon quantum dots supported AgI /ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J Environ Chem Eng 7:103272

    Article  CAS  Google Scholar 

  59. Folkes LK, Candeias LP, Wardman P (1995) Kinetics and mechanisms of hypochlorous acid reactions. Arch Biochem Biophys 323:120–126. https://doi.org/10.1006/abbi.1995.0017

    Article  CAS  PubMed  Google Scholar 

  60. Kong X, Jiang J, Ma J et al (2016) Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products. Water Res 90:15–23. https://doi.org/10.1016/J.WATRES.2015.11.068

    Article  CAS  PubMed  Google Scholar 

  61. Guo K, Wu Z, Shang C et al (2017) Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. Environ Sci Technol 51:10431–10439. https://doi.org/10.1021/acs.est.7b02059

    Article  CAS  PubMed  Google Scholar 

  62. Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dye Pigment 52:69–78. https://doi.org/10.1016/S0143-7208(01)00078-X

    Article  CAS  Google Scholar 

  63. Nowell LH, Hoigni JURG (1992) Photolysis of Aqueous Chlorine At Sunlight. Production 26:593–598

    CAS  Google Scholar 

  64. Carra I, García Sánchez JL, Casas López JL et al (2014) Phenomenological study and application of the combined influence of iron concentration and irradiance on the photo-Fenton process to remove micropollutants. Sci Total Environ 478:123–132. https://doi.org/10.1016/j.scitotenv.2014.01.066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by UNAM, through the PAPIIT, project IT100616. Melisa Portilla-Sangabriel would like to acknowledge CONACYT for her Master scholarship. José Alberto Macías Vargas is grateful for his pre-doctoral CONACYT Scholarship. Authors gratefully acknowledge the support of XRD and XRF Laboratory of the Geology Institute at UNAM, member of National Laboratory of Mineralogy and Geochemistry of Mexico, in the materials characterization, especially to Dr. T. Pi-Puig and Quim. Rufino Lozano. Authors are also grateful to MSc. Leticia García Montes de Oca for the HPLC analysis, to Biol. Germán Álvarez Lozano and MSc. Jorge Luis Romero Hernández for their support on Scattering Electron Microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-María Ramírez-Zamora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portilla-Sangabriel, M., Arzate, S., Macías-Vargas, JA. et al. Assessment of the Use of NaClO as an Alternative to H2O2 in the Oxidant-Titanium Ore-Simulated Solar Light System for Thiabendazole Degradation. Top Catal 64, 181–193 (2021). https://doi.org/10.1007/s11244-020-01388-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01388-8

Keywords

Navigation