Skip to main content
Log in

Field-Induced Chemistry in Catalysis: High Pressure and High Fields

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

High electrostatic fields of cations in zeolites and other catalysts is shown to modify the elctronic level struture of molecules. As an example, nitrogen molecules become nitrogen oxide like. It is argued that this is relevant for the Haber–Bosch synthesis. It is also pointed out that fields of the order of volts per Angstrom are equivalent to pressures of GigaPascals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Inghram MG, Gomer R (1955) Massenspektrometrische Untersuchungen der Feldemission positiver Ionen. Z Naturforsch Teil A 10:864–872

    Google Scholar 

  2. Block J (1963) Die Feldimpuls-Desorption, eine Methode zur Geschwindigkeitsmessung rascher Chemisorptionsvorgänge. Z Phys Chem NF 39:169–175

    Article  CAS  Google Scholar 

  3. Block J (1982) Field desorption and photon-induced field desorption. In: Vanselow R, Howe R (eds) Physics and chemistry at solid surfaces IV. Springer, Berlin

    Google Scholar 

  4. Block JH (1992) In surface science of catalysis. In: Dwyer DJ, Hoffmann FM (eds) In situ probes and reaction kinetics. ACS symposium series 482. American Chemical Society, Washington

    Google Scholar 

  5. Müller EW (1951) Das Feldionenmikroskop. Z Phys 131:136–142

    Article  Google Scholar 

  6. Müller Erwin W, Panitz John A, Brooks McLane S (1968) The atom-probe field ion microscope. Rev Sci Instrum 39:83–86

    Article  Google Scholar 

  7. Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) Atom probe field ion microscopy. Oxford Science Publications, Oxford

    Google Scholar 

  8. Fink HW (1988) Point source for ions and electrons. Phys Scr 38:260

    Article  CAS  Google Scholar 

  9. Ernst N, Drachsel W, Lin Y, Block JH, Kreuzer HJ (1986) Field adsorption of helium on tungsten. Phys Rev Lett 57:2686–2689

    Article  CAS  Google Scholar 

  10. Kreuzer HJ, Watanabe K, Wang LC (1990) Theory of field desorption and field ionization: thermal field desorption of helium. Surf Sci 232:379

    Article  CAS  Google Scholar 

  11. Tomanek D, Kreuzer HJ, Block JH (1985) Theoretical approaches to field desorption, tight binding calculation of N2 on Fe(111). J Phys 47(C2):139–144

    Google Scholar 

  12. Kreuzer HJ, Wang LC, Lang ND (1992) Self-consistent calculation of atomic adsorption on metals in high electric fields. Phys Rev B 45:12050–12055

    Article  CAS  Google Scholar 

  13. Karahka ML, Kreuzer HJ (2016) New physics and chemistry in high electrostatic fields. Surf Sci 643:164–171

    Article  CAS  Google Scholar 

  14. Steudel R (ed) (2004) Elemental sulfur and sulfur-rich compounds I (topics in current chemistry). Springer, Berlin

    Google Scholar 

  15. Jaenicke S, Ciszewski A, Dosselmann J, Drachsel W, Block JH, Menzel D (1988) Field-induced structural changes in adsorbed layers of polar molecules studied by photon-stimulated desorption. J Phys 49(C6):191–196

    Google Scholar 

  16. Karahka M, Kreuzer HJ (2011) Water whiskers in high electric fields. Phys Chem Chem Phys 13:11027–11033

    Article  CAS  Google Scholar 

  17. Karakha M, Kreuzer HJ, Markus Karahka, Kreuzer HJ (2013) Charge transfer in proton wires. Biointerphases 8:13

    Article  Google Scholar 

  18. Wang LCR, Kreuzer HJ, Nishikawa O (2006) Polythiophene in strong electrostatic fields. Org Electron 7:99–106

    Article  CAS  Google Scholar 

  19. Wang RLC, Kreuzer HJ, Grunze M, Pertsin AJ (2000) The effect of electrostatic fields on an oligo (ethylene glycol) molecule: dipole moments, polarizabilities and field dissociation. Phys Chem Chem Phys 2:1721–1727

    Article  CAS  Google Scholar 

  20. Kruse N, Abend G, Block JH (1988) The kinetics of adsorption and thermal desorption of NO on stepped Pt single crystal surfaces. J Chem Phys 88:1307–1312

    Article  CAS  Google Scholar 

  21. Kreuzer HJ, Wang LC (1990) Field-induced surface chemistry of NO. J Chem Phys 93:6065–6069

    Article  CAS  Google Scholar 

  22. Chau T-D, Visart de Bocarné TH, Kruse N, Kreuzer HJ (2003) Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures. J Chem Phys 119:12605–12610

    Article  CAS  Google Scholar 

  23. Kreuzer HJ, Gortel ZW (1986) Physisorption kinetics. Springer series in surface sciences, vol 1. Springer, Berlin

    Google Scholar 

  24. Kreuzer HJ to be published

  25. Suchorski Yu, Schmidt WA, Block JH, Kreuzer HJ (1994) Comparative studies on field ionization at surface sites of Rh, Ag, and Au: differences in local electric field enhancement. Vacuum 45:259–262

    Article  CAS  Google Scholar 

  26. Isaac T, Bonev Stanimir A (2010) A note on the metallization of compressed liquid hydrogen. J Chem Phys 132:134503–134507

    Article  Google Scholar 

  27. Elatresh Sabri F, Weizhao Cai NW, Hoffmann Ashcroft Roald, Shanti Deemyad, Bonev Stanimir A (2017) Evidence from Fermi surface analysis for the low-temperature structure of lithium. PNAS 21:5389–5394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Kreuzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuzer, H.J. Field-Induced Chemistry in Catalysis: High Pressure and High Fields. Top Catal 63, 1497–1501 (2020). https://doi.org/10.1007/s11244-020-01358-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01358-0

Keywords

Navigation