Skip to main content
Log in

Novel Fabrication of Photoactive CuO/HY Zeolite as an Efficient Catalyst for Photodecolorization of Malachite Green

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Copper oxide loaded on HY zeolite (CuO/HY) catalyst was prepared via a facile electrochemical method, and its photoactivity was evaluated by the decolorization of malachite green (MG) under fluorescent light irradiation. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), nitrogen (N2) adsorption–desorption, 27Al and 29Si magic-angle-spinning nuclear magnetic (MAS NMR), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS). The results showed that CuO nanoparticles are well-distributed on HY support. Besides, the isomorphous substitution of Al3+ with Cu2+ was occurred to form Si–O–Cu bond, as confirmed by the 27Al and 29Si MAS NMR, FTIR and XPS analysis. The catalyst activity towards on decolorization of MG was ranked in the following order: 3 wt% CuO/HY (99%) > 5 wt% CuO/HY (86%) > 1 wt% CuO/HY (80%) > HY (41%) > CuO (17%). The highest decolorization by 3 wt% CuO/HY is due to the well distribution of CuO nanoparticles on the HY surface of as well as the Cu incorporated into HY frameworks. In terms of turnover frequency, the 1 wt% CuO/HY showed a higher value (7.95 × 10−4 min−1) compared to the 3 wt% CuO/HY (3.13 × 10−4 min−1) and 5 wt% CuO/HY (1.64 × 10−4 min−1). The decreased of chemical oxygen demand demonstrated that the relationship between decolorization and degradability exists. A kinetic study indicated that the photocatalytic process follows a pseudo-first-order kinetics represented by the Langmuir–Hinshelwood model with the rate determining step as a surface reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brites FF, Santana VS, Fernandes-Machado NRC (2011) Top Catal 54:264–269

    CAS  Google Scholar 

  2. Solís-Casados DA, Martínez-Peña J, Hernández-López S, Escobar-Alarcón L (2020) Top Catal. https://doi.org/10.1007/s11244-020-01240-z

    Article  Google Scholar 

  3. Alshammari AS, Bagabas A, Alarifi N, Altamimi R (2019) Top Catal 62:786–794

    CAS  Google Scholar 

  4. Arabkhani P, Asfaram A (2019) J Hazard Mater 384:121394

    Google Scholar 

  5. Verma A, Thakur S, Mamba G, Prateek RK, Gupta P, Thakur VK (2020) Int J Biol Macromol 148:1130–1139

    CAS  Google Scholar 

  6. Ramos-Ramírez E, Gutiérrez-Ortega NL, Tzompantzi-Morales F, Barrera-Rodríguez A, Castillo-Rodríguez JC, Tzompantzi-Flores C, Guevara-Hornedo MDP (2020) Top Catal 1–18

  7. Nguyen VH, Nguyen TD, Van Nguyen T (2020) Top Catal 1–12

  8. Hassan NS, Jalil AA, Aziz FFA, Fauzi AA, Azami MS, Jusoh NWC (2020) Top Catal. https://doi.org/10.1007/s11244-020-01274-3

    Article  Google Scholar 

  9. Singh H, Kumar A, Thakur A, Kumar P, Nguyen VH, Vo DVN, Kumar D (2020) Top Catal. https://doi.org/10.1007/s11244-020-01278-z

    Article  Google Scholar 

  10. Sharma AK, Lee BK (2020) J Compos Mater 54:1561–1570

    CAS  Google Scholar 

  11. Khusnun NF, Jalil AA, Triwahyono S, Hitam CNC, Hassan NS, Jamian F, Hartanto D (2018) Powder Technol 327:170–178

    CAS  Google Scholar 

  12. Paschoalino M, Guedes NC, Jardim W, Mielczarski E, Mielczarski KJA, Bowen P, Kiwi J (2008) J Photochem Photobiol A: Chem 199:105–111

    CAS  Google Scholar 

  13. Nezamzadeh-Ejhieh A, Hushmandrad S (2010) Appl Catal A: Gen 388:149–159

    CAS  Google Scholar 

  14. Batista APL, Carvalho HWP, Luz GHP, Martins PFQ, Gonçalves M, Oliveira LCA (2010) J Environ Chem Lett 8:63–67

    CAS  Google Scholar 

  15. Sturini M, Maraschi F, Cantalupi A, Pretali L, Nicolis S, Dondi D, Profumo A, Caratto V, Sanguineti E, Ferretti M, Albini A (2020) Materials 13:537

    CAS  Google Scholar 

  16. Liu HD, Zhou SL, Wang Y, Xu Y, Cao Y, Zhu JH (2004) Stud Surf Sci Catal 154:2527–2535

    Google Scholar 

  17. Fernandes DM, Silva R, Hechenleitner AAW, Radovanovic E, Melo MAC, Pineda EAG (2009) Mater Chem Phys 115:110–115

    CAS  Google Scholar 

  18. Chowdhury IH, Ghosh S, Basak S, Naskar MK (2017) J Phys Chem Solids 104:103–110

    CAS  Google Scholar 

  19. Perkas N, Gunawan P, Amirian G, Wang Z, Zhang Z, Gedanken A (2014) Phys Chem Chem Phys 16:7521–7530

    CAS  Google Scholar 

  20. Fang B, Xing Y, Bonakdarpour A, Zhang S, Wilkinson DP (2015) ACS Sus Chem Eng 3:2381–2388

    CAS  Google Scholar 

  21. Weinberg NL, (2002) Electrochemistry Encyclopedia, New York.

  22. Jalil AA, Kurono N, Tokuda M (2002) Tetrahedron 58:7477–7484

    CAS  Google Scholar 

  23. Jalil AA, Kurono N, Tokuda M (2001) Synlett 12:1944–1946

    Google Scholar 

  24. Jalil AA, Kurono N, Tokuda M (2002) Synthesis 1:2681–2686

    Google Scholar 

  25. Triwahyono S, Jalil AA, Musthofa M (2010) Appl Catal A: Gen 388:90–93

    Google Scholar 

  26. Jaafar NF, Jalil AA, Triwahyono S, Muhid MNM, Sapawe N, Satar MAH, Asaari H (2012) Chem Eng J 191:112–122

    CAS  Google Scholar 

  27. Rachman RA, Martia UTI, Aulia W, Iqbal RM, Widiastuti N, Kurniawan F (2018) AIP Conf Proc 2049:020073

    Google Scholar 

  28. Nezamzadeh-Ejhieh A, Solmaz M (2011) Desalination 273:248–257

    CAS  Google Scholar 

  29. Parida KM, Rath D (2007) Appl Catal A: Gen 321:101–108

    CAS  Google Scholar 

  30. Messina PV, Morini MA, Sierra MB, Schulz CP (2006) J Colloid Interface Sci 300:270–278

    CAS  Google Scholar 

  31. Hamdan H, Klinowski J (1987) Chem Phys Lett 139:576–580

    CAS  Google Scholar 

  32. Salleh NFM, Jalil AA, Triwahyono S, Efendi J, Mukti RR, Hameed BH (2015) Appl. Surf. Sci 349:485–495

    CAS  Google Scholar 

  33. Klinowski J (1984) Nuclear magnetic resonance studies of zeolites. Progr NMR Spectrosc 16:237–309

    CAS  Google Scholar 

  34. Fatah NAA, Triwahyono S, Jalil AA, Salamun N, Mamat CR, Majid ZA (2017) Chem Eng J 314:650–659

    CAS  Google Scholar 

  35. Srivastava M, Ojha AK, Chaubey S, Sharma KP, Pandey AC (2010) J Alloys Compd 494:275–284

    CAS  Google Scholar 

  36. Phaahlamohlaka TN, Dlamini MW, Mogodi MW, Kumi DO, Jewell LL, Billing DG, Coville NJ (2018) Appl Catal A Gen 552:129–137

    CAS  Google Scholar 

  37. Aziz FFA, Jalil AA, Triwahyono S, Mohamed M (2018) Appl Surf Sci 455:84–95

    CAS  Google Scholar 

  38. El-Bahy ZM (2007) Mater Res Bull 42:2170–2183

    CAS  Google Scholar 

  39. Setiabudi HD, Jalil AA, Triwahyono S, Kamarudin NHN, Mukti RR (2012) Appl Catal A: Gen 417:190–199

    Google Scholar 

  40. Parler CM, Ritter JA, Amiridis MD (2001) J Non-Cryst Solids 279:119–125

    CAS  Google Scholar 

  41. Breitscheidel B, Zieder J, Schubert U (1991) Chem Mater 3:559–566

    CAS  Google Scholar 

  42. Hassan NS, Jalil AA, Triwahyono S, Hitam CNC, Rahman AFA, Khusnun NF, Mamat CR, Asmadi M, Mohamed M, Ali MW, Prasetyoko D (2018) J Taiwan Inst Chem E 82:322–330

    CAS  Google Scholar 

  43. Hitam CNC, Jalil AA, Triwahyono S, Ahmad A, Jaafar NF, Salamun N, Fatah NAA, Teh LP, Khusnun NF, Ghazali Z (2016) RSC Adv 6:76259–76268

    CAS  Google Scholar 

  44. Sathishkumar P, Sweena R, Wu JJ, Anandan S (2011) Chem Eng J 171:136–140

    CAS  Google Scholar 

  45. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) J Phys Chem C 110:24923–24928

    CAS  Google Scholar 

  46. Kongwudthiti S, Praserthdam P, Tanakulrungsank W, Inoue M (2003) J Mater Process Technol 136:186–189

    CAS  Google Scholar 

  47. Wang P, Zheng X, Wu X, Wei X, Zhou L (2012) Micropor Mesopor Mater 149:181–185

    CAS  Google Scholar 

  48. Serin N, Serin T, Horzum Ş, Çelik Y (2005) Semicond Sci Technol 20:398–401

    CAS  Google Scholar 

  49. Devi LG, Shyamala R (2018) Mater Chem Front 2:796–806

    Google Scholar 

  50. Higashimoto S, Suetsugu N, Azuma M, Ohue H, Sakata Y (2010) J Catal 274:76–83

    CAS  Google Scholar 

  51. Heredia JBD, Torregrosa J, Dominguez JR, Peres JA (2001) J Hazard Mater 83:255–264

    PubMed  Google Scholar 

  52. Sharma A, Erdenedelger G, Jeong HM, Lee BK (2020) J Environ Chem Eng 8:103749

    CAS  Google Scholar 

  53. Jalil AA, Satar MAH, Triwahyono S, Setiabudi HD, Kamarudin NHN, Jaafar NF, Sapawe N, Ahamad R (2013) J Electroanal Chem 701:50–58

    CAS  Google Scholar 

  54. Wang Y, Deng K, Zhang L (2011) J Phys Chem C 115:14300–14308

    CAS  Google Scholar 

  55. Sharma A, Lee BK (2017) Catal Today 287:113–121

    CAS  Google Scholar 

  56. Fernandes A, Makoś P, Wang Z, Boczkaj G (2019) Chem Eng J 14:123488

    Google Scholar 

  57. Saad AM, Abukhadra MR, Ahmed SAK, Elzanaty AM, Mady AH, Betiha MA, Rabie AM (2020) J Environ Manage 258:110043

    CAS  Google Scholar 

  58. Lin Y, Wu S, Li X, Wu X, Yang C, Zeng G, Lu L (2018) Appl Catal B: Environ 227:557–570

    CAS  Google Scholar 

  59. Helaïli N, Boudjamaa A, Kebir M, Bachari K (2017) Environ Sci and Pollut Res 24:6481–6491

    Google Scholar 

  60. Mohamed RM, Shawky A (2018) Appl Nanosci 8:1179–1188

    CAS  Google Scholar 

  61. Wang Q, Chen C, Zhao D, Ma W, Zhao J (2008) Langmuir 24:7338–7345

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Fundamental Research Grant Scheme from Ministry of Higher Education Malaysia (Grant No. FRGS/1/2019/STG07/UTM/01/1-5F192), and UTM High Impact Research Grant (No. 08G92) and Professional Development Research University Grants (Nos. 04E73 and 04E33) from University Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Jalil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, N.S., Jalil, A.A., Satar, M.A.H. et al. Novel Fabrication of Photoactive CuO/HY Zeolite as an Efficient Catalyst for Photodecolorization of Malachite Green. Top Catal 63, 1005–1016 (2020). https://doi.org/10.1007/s11244-020-01314-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01314-y

Keywords

Navigation