Skip to main content
Log in

Hydrogenation of Citral on Pt/SiO2 Catalysts: Effect of Sn Addition and Type of Solvent

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This work deals with the liquid-phase hydrogenation of citral over Pt monometallic and PtSn bimetallic catalysts supported on commercial silica. Bimetallic catalysts contain different Sn/Pt molar ratio of 0.5, 1.0 and 1.5. Cyclohexane or 2-propanol were used as solvent. The catalysts were characterized by N2-physisorption, XRD, NH3-TPD, H2-chemisorption, and TPR. Both XRD and TPR results showed the formation of PtSn and Pt3Sn. The proportion of Pt–Sn alloys was related to the Sn/Pt molar ratio: the greater the Sn/Pt molar ratio, the greater the amount of PtSn alloy species. The amount of these species was related to the catalytic activity and selectivity in the hydrogenation of citral. Pt monometallic catalysts showed a high initial catalytic activity with high selectivity to citronellal. Bimetallic catalysts exhibited high activity and selectivity to unsaturated alcohols as geraniol and nerol. With cyclohexane as solvent, a greater amount of Pt3Sn species promote consecutive hydrogenations, and with a greater amount of PtSn alloy the formation of compounds related to cyclization of citronellal was observed. The results showed that using a balanced amount of species (Pt3Sn and PtSn) and 2-propanol as solvent, a synergic effect that promotes high activity and selectivity to geraniol and nerol was observed maintaining the same levels of selectivity along reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Surburg H, Panten J (2006) Common fragance and flavor materials: preparation, properties and uses. Wiley, Weinheim

    Book  Google Scholar 

  2. Sukulku U, Nuchuchau O, Uawongyart N et al (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2008.12.029

    Article  Google Scholar 

  3. Barrales Cortés C, Tamayo Galván V, Santiago Pedro S, Viveros García T (2011) One pot synthesis of menthol from (±)-citronellal on nickel sulfated zirconia catalysts. Catal Today 172:21–26. https://doi.org/10.1016/j.cattod.2011.05.005

    Article  CAS  Google Scholar 

  4. Singh UK, Vannice MA (2001) Liquid-phase citral hydrogenation over SiO2-supported group VIII metal. J Catal 199:73–84. https://doi.org/10.1006/jcat.2000.3157

    Article  CAS  Google Scholar 

  5. Singh UK, Vannice MA (2000) Liquid-phase hydrogenation of citral over Pt/SiO2 catalysts I. Temperature effects on activity and selectivity. J Catal 191:165–180. https://doi.org/10.1006/jcat.1999.2803

    Article  CAS  Google Scholar 

  6. Bachiller-Baeza B, Guerrero-Ruiz A, Wang P, Rodríguez-Ramos I (2001) Hydrogenation of citral on activated carbon and high-surface-area graphite-supported ruthenium catalysts modified with iron. J Catal 204:450–459. https://doi.org/10.1006/jcat.2001.3394

    Article  CAS  Google Scholar 

  7. Malathi R, Viswanath RP (2001) Citral hydrogenation on supported platinum catalysts. Appl Catal A 208:323–327. https://doi.org/10.1016/S0926-860X(00)00715-8

    Article  CAS  Google Scholar 

  8. Reyes P, Rojas H, Fierro JLG (2003) Kinetic study of liquid-phase hydrogenation of citral over Ir/TiO2 catalysts. Appl Catal A 248:59–65. https://doi.org/10.1016/S0926-860X(03)00148-0

    Article  CAS  Google Scholar 

  9. Rojas HA, Martínez JJ, Díaz G, Gómez-Cortés A (2015) The effect of metal composition on the performance of Ir-Au/TiO2 catalysts for citral hydrogenation. Appl Catal A 503:196–202. https://doi.org/10.1016/j.apcata.2015.07.023

    Article  CAS  Google Scholar 

  10. Aramendia MA, Borau V, Jiménez C et al (1997) Selective liquid-phase hydrogenation of citral over supported palladium. J Catal 172:46–54. https://doi.org/10.1006/jcat.1997.1817

    Article  CAS  Google Scholar 

  11. Mäki-Arvela P, Tiainen LP, Lindblad M et al (2003) Liquid-phase hydrogenation of citral for production of citronellol: catalyst selection. Appl Catal A 241:271–288. https://doi.org/10.1016/S0926-860X(02)00497-0

    Article  Google Scholar 

  12. Trasarti AF, Marchi AJ, Apesteguia CR (2004) High selective synthesis of menthols from citral in a one-step process. J Catal 224:484–488. https://doi.org/10.1016/j.jcat.2004.03.016

    Article  CAS  Google Scholar 

  13. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev Sci Eng 40:81–126

    Article  CAS  Google Scholar 

  14. Stassi JP, Zgolicz PD, de Miguel SR, Scelza OA (2013) Formation of different promoted metallic phases in PtFe and PtSn catalysts supported on carbonaceous materials used for selective hydrogenation. J Catal 306:11–29. https://doi.org/10.1016/j.jcat.2013.05.029

    Article  CAS  Google Scholar 

  15. Stassi JP, Rodríguez VI, Yañez MJ et al (2017) Selective hydrogenation of citral with carbon nanotubes supported bimetallic catalysts prepared by deposition-reduction in liquid phase and conventional impregnation methods. Catal Lett 147:1903–1921. https://doi.org/10.1007/s10562-017-2091-8

    Article  CAS  Google Scholar 

  16. Vilella IM, Borbáth I, Magitfalvi JL et al (2007) PtSn/SiO2 catalysts prepared by controlled surface reactions for citral hydrogenation in liquid phase. Appl Catal A 326:37–47

    Article  CAS  Google Scholar 

  17. Vilella IM, de Miguel SR, Scelza OA (2008) Pt, PtSn and PtGe catalysts supported on granular carbon for fine chemistry hydrogenation reactions. J Mol Catal A 284:161–171. https://doi.org/10.1016/j.molcata.2008.01.017

    Article  CAS  Google Scholar 

  18. Zgolicz PD, Rodríguez VI, Vilella IM et al (2011) Catalytic performance in selective hydrogenation of citral of bimetallic Pt-Sn catalysts supported on MgAl2O4 and γ-Al2O3. Appl Catal A: Gen 392:208–217. https://doi.org/10.1016/j.apcata.2010.11.017

    Article  CAS  Google Scholar 

  19. Coupé JN, Jordão E, Fraga MA, Mendes MJ (2000) A comparative study of SiO2 supported Rh-Sn catalysts prepared by different methods in the hydrogenation of citral. Appl Catal A 199:45–51. https://doi.org/10.1016/S0926-860X(99)00525-6

    Article  Google Scholar 

  20. Neri G, Milone C, Donato A et al (1994) Selective hydrogenation of citral over Pt-Sn supported on activated carbon. J Chem Tech Biotechnol 60:83–88. https://doi.org/10.1002/jctb.280600113

    Article  CAS  Google Scholar 

  21. Silva AM, Santos AA, Mendes MJ et al (2003) Hydrogenation of citral over ruthenium-tin catalysts. Appl Catal A 241:155–165

    Article  CAS  Google Scholar 

  22. Galvagno S, Milone C, Donato A et al (1993) Hydrogenation of citral over Ru-Sn/C. Catal Lett 17:55–61. https://doi.org/10.1007/BF00763927

    Article  CAS  Google Scholar 

  23. Sordelli L, Psaro R, Vlaic G et al (1999) EXAFS studies of supported Rh–Sn catalysts for citral hydrogenation. J Catal 182:186–198. https://doi.org/10.1006/jcat.1998.2348

    Article  CAS  Google Scholar 

  24. Vicente A, Especel C, Marécot P, Williams CT (2011) The relationship between the structural properties of bimetallic Pd-Sn/SiO2 catalysts and their performance for selective citral hydrogenation. J Catal 283:133–142. https://doi.org/10.1016/j.jcat.2011.07.010

    Article  CAS  Google Scholar 

  25. Chatterjee A, Chatterjee M, Ikushima Y, Mizukami F (2004) The role of solvent on selective hydrogenation of conjugated and isolated C=C of Citral (3,7-dimethyl 2,6-octadienal)-a self-consistent reaction field study. Chem Phys Lett 395:143–149. https://doi.org/10.1016/j.cplett.2004.07.068

    Article  CAS  Google Scholar 

  26. Velu S, Gangwal SK (2006) Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel dispersions by temperature programmed desorption. Solid State Ion 177:803–811. https://doi.org/10.1016/j.ssi.2006.01.031

    Article  CAS  Google Scholar 

  27. Neimark AV, Sing KSW, Thommes M (2008) Characterization of solid catalysts. Physical properties. Surface area and porosity. Wiley, Weinheim

    Google Scholar 

  28. Hassnain AK, Prakash N, Kwang-Deog J (2018) Stabilization of Pt at the inner wall of hollow spherical SiO2 generated from Pt/hollow spherical SiC for sulfuric acid decomposition. Appl Catal B 231:151–160. https://doi.org/10.1016/j.apcatb.2018.03.013

    Article  CAS  Google Scholar 

  29. Neri G, Rizzo G, Pistone A et al (2007) One-pot synthesis of naturanol from a-pinene oxide on bifunctional heterogeneous catalysts Part II. The reaction. Appl Catal A 325:25–33. https://doi.org/10.1016/j.apcata.2007.01.046

    Article  CAS  Google Scholar 

  30. Furukawa S, Tamura A, Ozawa K, Komatsu T (2014) Catalytic properties of Pt-based intermetallic compounds in dehydrogenation of cyclohexane and n-butane. Appl Catal A 469:300–305. https://doi.org/10.1016/j.apcata.2013.10.012

    Article  CAS  Google Scholar 

  31. Sasikala R, Kulshreshtha SK (2004) Temperature programmed reduction studies of spillover effect in Pd impregnated metal oxide catalysts. J Therm Anal Calorim 78:723–729. https://doi.org/10.1007/s10973-004-0438-z

    Article  CAS  Google Scholar 

  32. Hurst NW, Gentry SJ, Jones A, McNicol BD (1982) Temperature Programmed Reduction. Catal Rev Sci Eng 24:233–309. https://doi.org/10.1080/03602458208079654

    Article  CAS  Google Scholar 

  33. H Knözinger 2008 Temperature-programmed reduction and oxidation Wiley Weinheim

    Google Scholar 

  34. Ebitani K, Hattori H (1991) Combined temperature-programmed reduction (TPR)-temperature-programmed desorption (TPD) study of supported platinum catalysts. Bull Chem Soc Jpn 64:2422–2427. https://doi.org/10.1246/bcsj.64.2422

    Article  CAS  Google Scholar 

  35. Ramallo-López JM, Santori GF, Giovanetti L et al (2003) XPS and XAFS Pt L2,3-edge studies of dispersed metallic Pt and PtSn clusters on SiO2 obtained by organometallic synthesis: structural and electronic characteristics. J Phys Chem B 107:11441–11451. https://doi.org/10.1021/jp030579y

    Article  CAS  Google Scholar 

  36. Ma T, Yun Z, Xu W et al (2016) Pd-H3PW12O40/Zr-MCM-41: An efficient catalyst for the sustainable dehydration of glycerol to acrolein. Chem Eng J 294:343–352. https://doi.org/10.1016/j.cej.2016.02.091

    Article  CAS  Google Scholar 

  37. Wismeijer AA, Keiboom APG, van Bekkum H (1986) Selective hydrogenation of citronellal to citronellol over Ru/TiO2 as compared to Ru/SiO2. Appl Catal 25:181–189. https://doi.org/10.1016/S0166-9834(00)81235-X

    Article  CAS  Google Scholar 

  38. Delbecq F, Sautet P (2003) Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt Catalysts: a density functional study of molecular adsorption. J Catal 220:115–126. https://doi.org/10.1016/S0021-9517(03)00249-5

    Article  CAS  Google Scholar 

  39. Mäki-Arvela P, Tiainen LP, Neyestanaki AK et al (2002) Liquid Phase Hydrogenation of citral: suppression of side reactions. Appl Catal A 237:181–200

    Article  Google Scholar 

  40. Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Che Soc Rev 22:409–416

    Article  CAS  Google Scholar 

  41. Bertero NM, Trasarti AF, Acevedo MC, Marchi AJ, Apesteguía CR (2020) Solvent effects in solid acid-catalyzed reactions: the case of the liquid-phase isomerization/cyclization of citronellal over SiO2-Al2O3. Mol Catal 481:110192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Universidad Iberoamericana Puebla, Universidad Autónoma Metropolitana, Universidad Veracruzana and Consejo Nacional de Ciencia y Tecnología (CONACyT) for the financial support. This work is dedicated to the memory of Dr. Gustavo Pérez.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Pérez-Pastenes or T. Viveros-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrales-Cortés, C.A., Pérez-Pastenes, H., Piña-Victoria, J.C. et al. Hydrogenation of Citral on Pt/SiO2 Catalysts: Effect of Sn Addition and Type of Solvent. Top Catal 63, 468–480 (2020). https://doi.org/10.1007/s11244-020-01312-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01312-0

Keywords

Navigation