Reactivity of C3Hx Adsorbates in Presence of Co-adsorbed CO and Hydrogen: Testing Fischer–Tropsch Chain Growth Mechanisms

Abstract

The identity of the surface intermediates involved in chain growth during Fischer–Tropsch synthesis remains a topic of ongoing debate. In the present work we use a combination of temperature programmed reaction spectroscopy and high resolution X-ray photoemission spectroscopy to study the reactivity of C3Hx adsorbates on a Co(0001) single crystal surface in order to explore the stabilities of the different C3Hx surface intermediates and to study elementary reaction steps relevant to chain growth and chain termination. Propene (H3C–CH=CH2) and propyl (H3C–CH2–CH2–) adsorbates react below 200 K already, either by desorption of propene or by dehydrogenation to adsorbed propyne (H3C–C≡CH). Co-adsorbed Had and COad do not affect the temperature at which propyl and propene react, but they do suppress the dehydrogenation pathway in favour of propene desorption. Their high reactivity under simulated FTS conditions disqualifies them as feasible intermediates for FTS, which requires long-lived intermediates to match the low monomer formation rate. Propyne, the most stable C3Hx adsorbate in the absence of COad, is hydrogenated to propylidyne (H3C–CH2–C≡) > 230 K when both COad and Had are present. Propylidyne dimerization occurs around 313 K and produces a 3-hexyne (H5C2–C≡C–C2H5) surface intermediate which is hydrogenated to 3-hexene (H5C2–CH=CH–C2H5) above 350 K. These findings are of direct relevance to FTS: they show that the high coverage of COad and Had present during the reaction influence the reactivity of CxHy adsorbates involved in chain growth and ultimately steer product selectivity. The findings provide further experimental support for the previously proposed alkylidyne chain growth mechanism on close-packed cobalt terraces: CO stabilizes CxHy growth intermediates in the alkylidyne form and growth proceeds via coupling of a long chain alkylidyne and methylidyne (CH).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    van de Loosdrecht J, Botes FG, Ciobica IM, Ferreira A, Gibson P, Moodley DJ, Saib AM, Visagie JL, Weststrate CJ, Niemantsverdriet JW (2013) Fischer-Tropsch synthesis: catalysts and chemistry. Elsevier Ltd., Amsterdam

    Google Scholar 

  2. 2.

    Claeys M, van Steen E (2004) Stud Surf Sci Catal 152:601–680

    CAS  Google Scholar 

  3. 3.

    Overett MJ, Hill RO, Moss JR (2000) Coord Chem Rev 206–207:581–605

    Google Scholar 

  4. 4.

    Weststrate CJ, van Helden P, Niemantsverdriet JW (2016) Catal Today 275:100–110

    CAS  Google Scholar 

  5. 5.

    van Santen RA, Markvoort AJ, Filot IAW, Ghouri MM, Hensen EJM (2013) Phys Chem Chem Phys 15:17038–17063

    PubMed  Google Scholar 

  6. 6.

    Maitlis PM, Zanotti V (2008) Catal Lett 122:80–83

    CAS  Google Scholar 

  7. 7.

    Filot IAW, van Santen RA, Hensen EJM (2014) Catal Sci Technol 4:3129–3140

    CAS  Google Scholar 

  8. 8.

    Zhuo M, Tan KF, Borgna A, Saeys M (2009) J Phys Chem C 113:8357–8365

    CAS  Google Scholar 

  9. 9.

    van Helden P, van den Berg JA, Petersen MA, Janse van Rensburg W, Ciobica IM, van de Loosdrecht J (2017) Faraday Discuss 197:117–151

    PubMed  Google Scholar 

  10. 10.

    Foppa L, Iannuzzi M, Copéret C, Comas-Vives A (2019) ACS Catal 9:6571–6582

    CAS  Google Scholar 

  11. 11.

    Weststrate CJ, van de Loosdrecht J, Niemantsverdriet JW (2016) J Catal 342:1–16

    CAS  Google Scholar 

  12. 12.

    Chen W, Filot IAW, Pestman R, Hensen EJM (2017) ACS Catal 7:8061–8071

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Mims CA, McCandlish LE (1987) J Phys Chem 91:929–937

    CAS  Google Scholar 

  14. 14.

    Schweicher J, Bundhoo A, Kruse N (2012) J Am Chem Soc 134:16135–16138

    CAS  PubMed  Google Scholar 

  15. 15.

    Schweicher J, Bundhoo A, Frennet A, Kruse N, Daly H (2010) J Phys Chem C 114:2248–2255

    CAS  Google Scholar 

  16. 16.

    Zhuo M, Borgna A, Saeys M (2013) J Catal 297:217–226

    CAS  Google Scholar 

  17. 17.

    Hibbitts D, Dybeck E, Lawlor T, Neurock M, Iglesia E (2016) J Catal 337:91–101

    CAS  Google Scholar 

  18. 18.

    Liu J, Hibbitts D, Iglesia E (1802) J Am Chem Soc 139(2017):11789–11791

    Google Scholar 

  19. 19.

    Li T, Wen X, Li Y-W, Jiao H (2019) J Phys Chem C 123:25657–25667

    CAS  Google Scholar 

  20. 20.

    Weststrate CJ, Niemantsverdriet JW (2018) ACS Catal 8:10826–10835

    CAS  Google Scholar 

  21. 21.

    Weststrate CJ, Sharma D, Garcia Rodriguez D, Gleeson MA, Fredriksson HOA, Niemantsverdriet JW (2020) Nat Commun 11:750

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Weststrate CJ, Ciobîcă IM, van de Loosdrecht J, Niemantsverdriet JW (2016) J Phys Chem C 120:29210–29224

    CAS  Google Scholar 

  23. 23.

    van Helden P, van den Berg J-A, Weststrate CJ (2012) ACS Catal 2:1097–1107

    Google Scholar 

  24. 24.

    Habermehl-Ćwirzeń KME, Kauraala K, Lahtinen J (2004) Phys Scr T108:28–32

    Google Scholar 

  25. 25.

    Huesges Z, Christmann K (2013) Zeitschrift Fur Phys Chemie 227:881–899

    CAS  Google Scholar 

  26. 26.

    Shavorskiy A, Zhu S, Knudsen J, Scardamaglia F, Mattia, Cavalca, Weissenrieder HJ, Jonas, Schnadt, Tarawneh (2019) in preparation

  27. 27.

    Baraldi A, Barnaba M, Brena B, Cocco D, Comelli G, Lizzit S, Paolucci G, Rosei R (1995) J Electron Spectros Relat Phenomena 76:145–149

    CAS  Google Scholar 

  28. 28.

    Habermehl-Ćwirzeń K, Lahtinen J (2004) Surf Sci 573:183–190

    Google Scholar 

  29. 29.

    Weststrate CJ, Kizilkaya AC, Rossen ETR, Verhoeven MWGM, Ciobîcǎ IM, Saib AM, Niemantsverdriet JW (2012) J Phys Chem C 116:11575–11583

    CAS  Google Scholar 

  30. 30.

    Kizilkaya AC, Niemantsverdriet JW, Weststrate CJ (2016) J Phys Chem C 120:4833–4842

    CAS  Google Scholar 

  31. 31.

    Weststrate CJ, Mahmoodinia M, Farstad MH, Svenum I-H, Strømsheim MD, Niemantsverdriet JW, Venvik HJ (2019) Catal Today 342:124–130

    Google Scholar 

  32. 32.

    Tjandra S, Guo H, Zaera F (2011) Top Catal 54:26–33

    CAS  Google Scholar 

  33. 33.

    Chrysostomou D, French C, Zaera F (2000) Catal Lett 69:117–128

    CAS  Google Scholar 

  34. 34.

    Tjandra S, Zaera F (1994) Langmuir 10:2640–2646

    CAS  Google Scholar 

  35. 35.

    Jenks CJ, Bent BE, Bernstein N, Zaera F (1993) J Am Chem Soc 115:308–314

    CAS  Google Scholar 

  36. 36.

    Weststrate CJ, Niemantsverdriet JW (2016) Faraday Discuss 197:101–116

    Google Scholar 

  37. 37.

    Chiang C-M, Bent BE (1992) Surf Sci 279:79–88

    CAS  Google Scholar 

  38. 38.

    Weststrate CJ, Ciobîcă IM, Saib AM, Moodley DJ, Niemantsverdriet JW (2014) Catal Today 228:106–112

    CAS  Google Scholar 

  39. 39.

    Steinrück HP, Fuhrmann T, Papp C, Tränkenschuh B, Denecke R (2006) J Chem Phys 125:204706

    PubMed  Google Scholar 

  40. 40.

    Andersen JN, Beutler A, Sorensen SL, Nyholm R, Setlik BJ, Heskett D (1997) Chem Phys Lett 269:371–377

    CAS  Google Scholar 

  41. 41.

    Wiklund M, Beutler A, Nyholm R, Andersen JN (2000) Surf Sci 461:107–117

    CAS  Google Scholar 

  42. 42.

    Weststrate CJ, Gericke HJ, Verhoeven MWGM, Ciobîcă IM, Saib AM, Niemantsverdriet JW (2010) J Phys Chem Lett 1:1767–1770

    CAS  Google Scholar 

  43. 43.

    Yang QY, Maynard KJ, Johnson AD, Ceyer ST (1995) J Chem Phys 102:7734–7749

    CAS  Google Scholar 

  44. 44.

    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Van Dillen J, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    CAS  PubMed  Google Scholar 

  45. 45.

    Cheng J, Song T, Hu P, Lok CM, Ellis P, French S (2008) J Catal 255:20–28

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out as part of the SynCat@DIFFER program between the Dutch institute for fundamental energy research (DIFFER), Eindhoven university of Technology (TU/e) and Syngaschem BV and is funded jointly by the Netherlands Organization for Scientific Research (NWO) and Syngaschem BV. We acknowledge ELETTRA, the European Synchrotron light source in Trieste, Italy (proposal 20180250), and MAX IV, the Swedish national laboratory for research using X-rays, Lund, Sweden (proposal 20180237) for provision of beamtime. The staff at the SuperESCA (ELETTRA) and HIPPIE (MAX IV) beamlines are acknowledged for their excellent support. We acknowledge the technical support from the technical support staff at the DIFFER institute. Syngaschem BV gratefully acknowledges substantial funding from Synfuels China Technology Co. Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. J. Weststrate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1176 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weststrate, C.J., Sharma, D., Garcia Rodriguez, D. et al. Reactivity of C3Hx Adsorbates in Presence of Co-adsorbed CO and Hydrogen: Testing Fischer–Tropsch Chain Growth Mechanisms. Top Catal 63, 1412–1423 (2020). https://doi.org/10.1007/s11244-020-01306-y

Download citation

Keywords

  • Fischer–Tropsch synthesis
  • Chain growth mechanism
  • Cobalt catalysts
  • Synchrotron XPS
  • Near-ambient pressure XPS
  • Elementary surface reactions