Effect of Sc3+/V5+ Co-Doping on Photocatalytic Activity of TiO2

Abstract

Series of Sc/V co-doped rutile TiO2 with different Sc/V ratio was synthesized. Samples were characterized by XRD, SEM, XPS, BET, EPR, diffuse reflectance spectroscopy and Kelvin probe methods. EPR spectroscopy reveals a simultaneous increase of V4+ and Ti3+ as vanadium content grows. At the same time, an increase of vanadium concentration in co-doped samples results in stronger absorption in visible light range. However, a photocatalytic activity dependence on the co-dopant ratio demonstrates “volcano” plot behavior with maximum at 75/25 Sc/V ratio, while the work function dependence on Sc/V ratio demonstrates a negative correlation with photocatalytic activity resulting in a minimal value of work function at the same optimal ratio of co-dopant content. The analysis of the experimental results infers that alteration of Sc/V co-doping ratio leads to redistribution between shallow traps, which are not effective in charge carrier recombination, and deep traps, which act as effective recombination centers, with maximal shallow traps concentration corresponding to the optimal Sc/V ratio equal to 75/25, yielding the lowest recombination efficiency and therefore, the highest photocatalytic activity. Redistribution of defect states induced by co-doping should be distinguished as a primary factor of alteration of photocatalytic activity in co-doped TiO2. Presented results demonstrate that photoactivity of co-doped titania cannot be considered as result of either independent action of dopants or their additive effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ghosh S, Das AP (2015) Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol Environ Chem. https://doi.org/10.1080/02772248.2015.1052204

    Article  Google Scholar 

  2. 2.

    Wang Z, Cai W, Hong X et al (2005) Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl Catal B Environ 57:223–231. https://doi.org/10.1016/j.apcatb.2004.11.008

    CAS  Article  Google Scholar 

  3. 3.

    Grabowska E, Zaleska A, Sobczak JW et al (2009) Boron-doped TiO2: characteristics and photoactivity under visible light. Procedia Chem 1:1553–1559

    CAS  Article  Google Scholar 

  4. 4.

    Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ 144:333–342. https://doi.org/10.1016/j.apcatb.2013.07.032

    CAS  Article  Google Scholar 

  5. 5.

    Choi J, Park H, Hoffmann MR (2010) Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J Phys Chem C 114:783–792. https://doi.org/10.1021/jp908088x

    CAS  Article  Google Scholar 

  6. 6.

    Zheng Y, Wang W (2014) Electrospun nanofibers of Er3+-doped TiO2 with photocatalytic activity beyond the absorption edge. J Solid State Chem 210:206–212. https://doi.org/10.1016/j.jssc.2013.11.029

    CAS  Article  Google Scholar 

  7. 7.

    Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516. https://doi.org/10.1016/S0021-9517(02)00104-5

    CAS  Article  Google Scholar 

  8. 8.

    Bloh JZ, Dillert R, Bahnemann DW (2012) Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J Phys Chem C 116:25558–25562. https://doi.org/10.1021/jp307313z

    CAS  Article  Google Scholar 

  9. 9.

    Kuznetsov VN, Serpone N (2006) Visible light absorption by various titanium dioxide specimens. J Phys Chem B 110:25203

    CAS  Article  Google Scholar 

  10. 10.

    Emeline AV, Kuzmin GN, Serpone N (2008) Wavelength-dependent photostimulated adsorption of molecular O2 and H2 on second generation titania photocatalysts: the case of the visible-light-active N-doped TiO2 system. Chem Phys Lett 454:279–283. https://doi.org/10.1016/j.cplett.2008.02.010

    CAS  Article  Google Scholar 

  11. 11.

    Thuy NM, Van DQ, Thi L, Hai H (2012) The visible light activity of the TiO 2 and TiO 2: V4 + photocatalyst. Nanomater Nanotechnol 2:14

    Article  Google Scholar 

  12. 12.

    Ola O, Maroto-Valer MM (2015) Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Appl Catal A Gen 502:114–121. https://doi.org/10.1016/j.apcata.2015.06.007

    CAS  Article  Google Scholar 

  13. 13.

    Cavalheiro AA, Bruno JC, Saeki MJ et al (2008) Effect of scandium on the structural and photocatalytic properties of titanium dioxide thin films. J Mater Sci 43:602–608. https://doi.org/10.1007/s10853-007-1743-2

    CAS  Article  Google Scholar 

  14. 14.

    Berglund SP, Hoang S, Minter RL et al (2013) Investigation of 35 elements as single metal oxides, mixed metal oxides, or dopants for titanium dioxide for dye-sensitized solar cells. J Phys Chem C 117:25248–25258. https://doi.org/10.1021/jp4073747

    CAS  Article  Google Scholar 

  15. 15.

    Zhang DR, Liu HL, Han SY, Piao WX (2013) Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B. J Ind Eng Chem 19:1838–1844. https://doi.org/10.1016/j.jiec.2013.02.029

    CAS  Article  Google Scholar 

  16. 16.

    Patterson AL (1939) The scherrer formula for x-ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978

    CAS  Article  Google Scholar 

  17. 17.

    Bowman JC, Krumhansl JA, Stock JR (1955) Interpretation of the strain broadening components in x-ray diffraction patterns. J Appl Phys 26:1057. https://doi.org/10.1063/1.1722137

    CAS  Article  Google Scholar 

  18. 18.

    Sadewasser SGT (2012) Experimental technique and working modes. In: Sadewasser S, Glatzel T (eds) Kelvin probe force microscopy. Springer, Cham, pp 7–24

    Google Scholar 

  19. 19.

    Tian B, Li C, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151:220–227. https://doi.org/10.1016/j.cej.2009.02.030

    CAS  Article  Google Scholar 

  20. 20.

    Khan M, Song Y, Chen N, Cao W (2013) Effect of v doping concentration on the electronic structure, optical and photocatalytic properties of nano-sized V-doped anatase TiO2. Mater Chem Phys 142:148–153. https://doi.org/10.1016/j.matchemphys.2013.06.050

    CAS  Article  Google Scholar 

  21. 21.

    Davidson A, Che M (1992) Temperature-induced diffusion of probe vanadium(IV) ions into the matrix of titanium dioxide as investigated by ESR techniques. J Phys Chem 96:9909–9915. https://doi.org/10.1021/j100203a061

    CAS  Article  Google Scholar 

  22. 22.

    Kokorin AI, Arakelyan VM, Arutyunian VM (2003) Spectroscopic study of polycrystalline TiO2 doped with vanadium. Russ Chem Bull 52:93–97. https://doi.org/10.1023/A:1022488013375

    CAS  Article  Google Scholar 

  23. 23.

    Gillis E, Boesman E (1966) E. P. R.-Studies of V2O5 single crystals. I. Defect centres in pure, non‐stoichiometric vanadium pentoxide. Phys Status Solidi 14:337–347. https://doi.org/10.1002/pssb.19660140211

    CAS  Article  Google Scholar 

  24. 24.

    Kubec F, Šroubek Z (1972) Paramagnetic resonance of interstitial V4 + in TiO2. J Chem Phys 57:1660–1663. https://doi.org/10.1063/1.1678451

    CAS  Article  Google Scholar 

  25. 25.

    Maira AJ, Augugliaro V, Coronado JM et al (2002) EPR study of the surface characteristics of nanostructured TiO 2 under UV irradiation. Langmuir 17:5368–5374. https://doi.org/10.1021/la010153f

    CAS  Article  Google Scholar 

  26. 26.

    Kumar CP, Gopal NO, Wang TC et al (2006) EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J Phys Chem B 110:5223–5229. https://doi.org/10.1021/jp057053t

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    MacDonald IR, Rhydderch S, E Holt et al (2012) EPR studies of electron and hole trapping in titania photocatalysts. Catal Today 182:39–45

    CAS  Article  Google Scholar 

  28. 28.

    Yang S, Halliburton LE, Manivannan A et al (2009) Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: oxygen vacancies and Ti3 + ions. Appl Phys Lett 94:2–5. https://doi.org/10.1063/1.3124656

    CAS  Article  Google Scholar 

  29. 29.

    Howe RF, Grätzel M (1985) EPR observation of trapped electrons in colloidal TiO2. J Phys Chem 89:4495–4499. https://doi.org/10.1021/j100267a018

    CAS  Article  Google Scholar 

  30. 30.

    Le Mercier T, Mariot JM, Parent P et al (1995) Formation of Ti3 + ions at the surface of laser-irradiated rutile. Appl Surf Sci 86:382–386. https://doi.org/10.1016/0169-4332(94)00421-8

    Article  Google Scholar 

  31. 31.

    Attwood AL, Murphy DM, Edwards JL et al (2003) An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces. Res Chem Intermed 29:449–465. https://doi.org/10.1163/156856703322148991

    CAS  Article  Google Scholar 

  32. 32.

    Böer KW, Pohl UW (2017) Carrier recombination and noise. Semiconduct Phys. Springer, Cham, pp 1–55

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Resource Center (RC) “Nanophotonics”, RC “Centre for Innovative Technologies of Composite Nanomaterials”, RC “X-ray Diffraction Studies”, RC “Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics” and RC “Geomodel” of the Research Park at the Saint-Petersburg State University for helpful assistance in the characterization of the samples.

Funding

This research was supported by Russian Foundation for Basic Research (RFBR) via a research grant N18–29–23035_mk and by Saint-Petersburg State University via a research project (Pure ID 51124539).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petr D. Murzin.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11244_2020_1292_MOESM1_ESM.doc

Electronic supplementary material 1 (DOC 1035 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murzin, P.D., Murashkina, A.A., Emeline, A.V. et al. Effect of Sc3+/V5+ Co-Doping on Photocatalytic Activity of TiO2. Top Catal (2020). https://doi.org/10.1007/s11244-020-01292-1

Download citation

Keywords

  • TiO2
  • Co-doping
  • Photocatalysis
  • Phenol photodegradation
  • Work function
  • Shallow traps
  • Intrinsic defects