Catalysis at Metal/Oxide Interfaces: Density Functional Theory and Microkinetic Modeling of Water Gas Shift at Pt/MgO Boundaries

Abstract

The impact of metal/oxide interfaces on the catalytic properties of oxide-supported metal nanoparticles is a topic of longstanding interest in the field of heterogeneous catalysis. The significance of the metal/oxide interaction has been shown to vary according to both the inherent reactivity of the metal nanoparticle and the properties of the oxide support, with effects such as the metal d-band center, the nanoparticle shape, and the reducibility of the oxide believed to contribute to the overall system reactivity. In recent years, the water gas shift (WGS) reaction, wherein carbon monoxide and water are converted to carbon dioxide and hydrogen, has emerged as a model chemistry to probe the molecular-level details of how catalysis can be promoted in such environments, and this reaction is the focus of the present contribution. Using a combination of periodic Density Functional Theory calculations and microkinetic modeling, we present a comprehensive analysis of the WGS mechanism at the interface between a quasi-one dimensional platinum nanowire and an irreducible MgO support. The nanowire is lattice matched to the MgO support to remove spurious strain at the metal/oxide interface, and reactions both on the nanowire and at the three-phase boundary itself are considered in the mechanistic analysis. Additionally, to elucidate the consequences of adsorbate–adsorbate interactions on the WGS chemistry, an ab-initio thermodynamic analysis of CO coverage is performed, and the impact of the higher coverage CO states on the reaction chemistry is explicitly evaluated. These results are combined with detailed calculations of adsorbate entropies and dual-site microkinetic modeling to determine the kinetically significant features of the WGS reaction network which are subsequently, validated through experimental measurements of apparent reaction orders and activation barrier. The analysis demonstrates the important role that the metal/oxide interface plays in the reaction, with the water dissociation step being facile at the interface compared to the pure metal or oxide surfaces. Further, explicit consideration of CO interactions with other adsorbates at the metal/oxide interface is found to be central to correctly determining reaction mechanisms, rate determining steps, reaction orders, and effective activation barriers. These results are captured in a closed-form Langmuir–Hinshelwood model, derived from a simplified version of the complete microkinetic analysis, which reveals, among other results, that the celebrated carboxyl mechanism of Mavrikakis and coworkers is the governing pathway when accounting for reaction-relevant CO coverages.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ro I, Resasco J, Christopher P (2018) Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catal 8:7368–7387

    CAS  Google Scholar 

  2. 2.

    Duan Z, Henkelman G (2015) CO oxidation at the Au/TiO2 boundary: the role of the Au/Ti5c site. ACS Catal 5(3):1589–1595

    CAS  Google Scholar 

  3. 3.

    Chen Z, Mao Y, Chen J, Wang H, Li Y, Hu P (2017) Understanding the dual active sites of the FeO/Pt(111) interface and reaction kinetics: density functional theory study on methanol oxidation to formaldehyde. ACS Catal 7(7):4281–4290

    CAS  Google Scholar 

  4. 4.

    Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc 139(29):9739–9754

    CAS  PubMed  Google Scholar 

  5. 5.

    Ojeda M, Iglesia E (2009) Formic acid dehydrogenation on au-based catalysts at near-ambient temperatures. Angew Chem 48(26):4800–4803

    CAS  Google Scholar 

  6. 6.

    Shekhar M et al (2012) Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc 134(10):4700–4708

    CAS  PubMed  Google Scholar 

  7. 7.

    Sabnis KD et al (2015) Water-gas shift catalysis over transition metals supported on molybdenum carbide. J Catal 331:162–171

    CAS  Google Scholar 

  8. 8.

    Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Water gas shift reaction on Cu and Au nanoparticles supported on CeO 2(111) and ZnO(0001): Intrinsic activity and importance of support interactions. Angew Chem 46(8):1329–1332

    CAS  Google Scholar 

  9. 9.

    Chen A et al (2019) Structure of the catalytically active copper–ceria interfacial perimeter. Nat Catal 2(4):334–341

    CAS  Google Scholar 

  10. 10.

    Thinon O, Diehl F, Avenier P, Schuurman Y (2008) Screening of bifunctional water-gas shift catalysts. Catal Today 137(1):29–35

    CAS  Google Scholar 

  11. 11.

    Pazmiño JH et al (2012) Metallic Pt as active sites for the water-gas shift reaction on alkali-promoted supported catalysts. J Catal 286:279–286

    Google Scholar 

  12. 12.

    Williams WD et al (2010) Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. J Am Chem Soc 132(40):14018–14020

    CAS  PubMed  Google Scholar 

  13. 13.

    Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C 112(12):4608–4617

    CAS  Google Scholar 

  14. 14.

    Gokhale AA, Dumesic JA, Mavrikakis M (2008) Article on the mechanism of low-temperature water gas shift reaction on copper on the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130(33):1402–1414

    CAS  PubMed  Google Scholar 

  15. 15.

    Aranifard S, Ammal SC, Heyden A (2012) Nature of Ptn/CeO2(111) surface under water-gas shift reaction conditions: a constrained ab initio thermodynamics study. J Phys Chem C 116(16):9029–9042

    CAS  Google Scholar 

  16. 16.

    Duke AS et al (2017) Understanding active sites in the water-gas shift reaction for Pt–Re catalysts on titania. ACS Catal 7(4):2597–2606

    CAS  Google Scholar 

  17. 17.

    Carrasquillo-Flores R, Gallo JMR, Hahn K, Dumesic JA, Mavrikakis M (2013) Density functional theory and reaction kinetics studies of the water-gas shift reaction on Pt-Re catalysts. ChemCatChem 5(12):3690–3699

    CAS  Google Scholar 

  18. 18.

    Cybulskis VJ, Wang J, Pazmiño JH, Ribeiro FH, Delgass WN (2016) Isotopic transient studies of sodium promotion of Pt/Al2O3 for the water–gas shift reaction. J Catal 339:163–172

    CAS  Google Scholar 

  19. 19.

    Stamatakis M, Chen Y, Vlachos DG (2011) First-principles-based kinetic monte carlo simulation of the structure sensitivity of the watergas shift reaction on platinum surfaces. J Phys Chem C 115(50):24750–24762

    CAS  Google Scholar 

  20. 20.

    Song W, Hensen EJM (2014) Mechanistic aspects of the water-gas shift reaction on isolated and clustered Au atoms on CeO 2 (110): a density functional theory study. ACS Catal 4(6):1885–1892

    CAS  Google Scholar 

  21. 21.

    Zhao Z-J et al (2017) Importance of metal-oxide interfaces in heterogeneous catalysis: a combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO. J Catal 345:157–169

    CAS  Google Scholar 

  22. 22.

    Choksi T, Majumdar P, Greeley JP (2018) Electrostatic origins of linear scaling relationships at bifunctional metal/oxide interfaces: a case study of Au nanoparticles on doped MgO Substrates. Angew Chemie 130(47):15636–15640

    Google Scholar 

  23. 23.

    Mehta P, Greeley J, Delgass WN, Schneider WF (2017) Adsorption energy correlations at the metal-support boundary. ACS Catal 7(7):4707–4715

    CAS  Google Scholar 

  24. 24.

    Aranifard S, Ammal SC, Heyden A (2014) On the importance of metal-oxide interface sites for the water-gas shift reaction over Pt/CeO2 catalysts. J Catal 309:314–324

    CAS  Google Scholar 

  25. 25.

    Kauppinen MM, Melander MM, Bazhenov AS, Honkala K (2018) Unraveling the role of the RhZrO 2interface in the watergas-shift reaction via a first-principles microkinetic study. ACS Catal 8(12):11633–11647

    CAS  Google Scholar 

  26. 26.

    Flaherty DW, Yu WY, Pozun ZD, Henkelman G, Mullins CB (2011) Mechanism for the water-gas shift reaction on monofunctional platinum and cause of catalyst deactivation. J Catal 282(2):278–288

    CAS  Google Scholar 

  27. 27.

    Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: First principles and microkinetic modeling. J Phys Chem C 112:4608–4617

    CAS  Google Scholar 

  28. 28.

    Clay JP, Greeley JP, Ribeiro FH, Delgass WN, Schneider WF (2014) DFT comparison of intrinsic WGS kinetics over Pd and Pt. J Catal 320(1):106–117

    CAS  Google Scholar 

  29. 29.

    Williams WD, Greeley JP, Delgass WN, Ribeiro FH (2017) Water activation and carbon monoxide coverage effects on maximum rates for low temperature water-gas shift catalysis. J Catal 347:197–204

    CAS  Google Scholar 

  30. 30.

    Phatak A, Delgass W (2009) Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt. J Phys Chem C 113(17):7269–7276

    CAS  Google Scholar 

  31. 31.

    Phatak AA et al (2007) Kinetics of the watergas shift reaction on Pt catalysts supported on alumina and ceria. Catal Today 123(1–4):224–234

    CAS  Google Scholar 

  32. 32.

    Cui Y et al (2017) Participation of interfacial hydroxyl groups in the water-gas shift reaction over Au/MgO catalysts. Catal Sci Technol 7(22):5257–5266

    CAS  Google Scholar 

  33. 33.

    Kresse G, Hafner J (1993) Ab initiomolecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    CAS  Google Scholar 

  34. 34.

    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    CAS  Google Scholar 

  35. 35.

    Kresse G, Hafner J (1994) Ab initiomolecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269

    CAS  Google Scholar 

  36. 36.

    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Google Scholar 

  37. 37.

    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249

    CAS  Google Scholar 

  38. 38.

    Wellendorff J, Lundgaard KT, Jacobsen KW, Bligaard T (2014) MBEEF: an accurate semi-local Bayesian error estimation density functional. J Chem Phys 140(14):144107

    PubMed  Google Scholar 

  39. 39.

    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Google Scholar 

  40. 40.

    Henkelman G, Uberuaga BP, Jónsson H (2000) Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    CAS  Google Scholar 

  41. 41.

    Smidstrup S, Pedersen A, Stokbro K, Jónsson H (2014) Improved initial guess for minimum energy path calculations. J Chem Phys 140(21):214106

    PubMed  Google Scholar 

  42. 42.

    Blomqvist J et al (2017) The atomic simulation environment—a python library for working with atoms. J Phys Condens Matter 29:273002

    PubMed  Google Scholar 

  43. 43.

    Rosen AS, Notestein JM, Snurr RQ (2018) Comprehensive phase diagrams of MoS2 edge sites using dispersion-corrected DFT free energy calculations. J Phys Chem C 122(27):15318–15329

    CAS  Google Scholar 

  44. 44.

    Zeng Z, Chang K-C, Kubal J, Markovic NM, Greeley J (2017) Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion. Nat. Energy 2:17070

    CAS  Google Scholar 

  45. 45.

    Luo W, Asthagiri A (2014) An ab initio thermodynamics study of cobalt surface phases under ethanol steam reforming conditions. Catal Sci Technol 4(9):3379–3389

    CAS  Google Scholar 

  46. 46.

    Todorova M, Reuter K, Scheffler M (2004) Oxygen overlayers on Pd(111) studied by density functional theory. J Phys Chem B 108(38):14477–14483

    CAS  Google Scholar 

  47. 47.

    Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys Rev B 65(3):035406

    Google Scholar 

  48. 48.

    Cheula R, Soon A, Maestri M (2018) Prediction of morphological changes of catalyst materials under reaction conditions by combined: Ab initio thermodynamics and microkinetic modelling. Catal Sci Technol 8(14):3493–3503

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Linstrom PJ, Mallard WG (2001) The NIST Chemistry WebBook: a chemical data resource on the Internet. J Chem Eng Data 46(5):1059–1063

    CAS  Google Scholar 

  50. 50.

    Bukowski BC, Bates JS, Gounder R, Greeley J (2018) First principles, microkinetic, and experimental analysis of Lewis acid site speciation during ethanol dehydration on Sn-Beta zeolites. J Catal 365:261–276

    CAS  Google Scholar 

  51. 51.

    Choksi T, Greeley J (2016) Partial oxidation of methanol on MoO 3(010): a DFT and microkinetic study. ACS Catal 6(11):7260–7277

    CAS  Google Scholar 

  52. 52.

    Motagamwala AH, Ball MR, Dumesic JA (2018) Microkinetic analysis and scaling relations for catalyst design. Annu Rev Chem Biomol Eng 9(1):413–450

    PubMed  Google Scholar 

  53. 53.

    Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131(23):8077–8082

    CAS  PubMed  Google Scholar 

  54. 54.

    Bollmann L et al (2008) Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts. J Catal 257(1):43–54

    CAS  Google Scholar 

  55. 55.

    Liu P, Rodriguez JA (2007) Water-gas-shift reaction on metal nanoparticles and surfaces. J Chem Phys 126(16):164705

    PubMed  Google Scholar 

  56. 56.

    Ammal SC, Heyden A (2014) Water-gas shift catalysis at corner atoms of Pt clusters in contact with a TiO2 (110) support surface. ACS Catal 2(110):3654–3662

    Google Scholar 

  57. 57.

    Kleis J et al (2011) Finite size effects in chemical bonding: from small clusters to solids. Catal Lett 141(8):1067–1071

    CAS  Google Scholar 

  58. 58.

    Molina LM, Hammer B (2003) Active role of oxide support during CO oxidation at Au/MgO. Phys Rev Lett 90(20):1–4

    Google Scholar 

  59. 59.

    Sacré N et al (2017) Pt thin films with nanometer-sized terraces of (100) orientation. J Phys Chem C 121(22):12188–12198

    Google Scholar 

  60. 60.

    Molina LM, Hammer B (2004) Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys Rev B 69(15):1–22

    Google Scholar 

  61. 61.

    Metiu H, Chrétien S, Hu Z, Li B, Sun X (2012) Chemistry of lewis acid-base pairs on oxide surfaces. J Phys Chem C 116(19):10439–10450

    CAS  Google Scholar 

  62. 62.

    Feibelman PJ et al (2001) The CO/Pt(111) puzzle. J Phys Chem B 105(18):4018–4025

    CAS  Google Scholar 

  63. 63.

    Gunasooriya GTTKK, Saeys M (2018) CO adsorption on Pt(111): from isolated molecules to ordered high-coverage structures. ACS Catal 8:10225–10233

    CAS  Google Scholar 

  64. 64.

    Cybulskis VJ, Wang J, Pazmiño JH, Ribeiro FH, Delgass WN (2016) Isotopic transient studies of sodium promotion of Pt/Al2O3 for the waterâgas shift reaction. J Catal 339:163–172

    CAS  Google Scholar 

  65. 65.

    Hammer B, Morikawa Y, Nørskov J (1996) CO Chemisorption at metal surfaces and overlayers. Phys Rev Lett 76(12):2141–2144

    CAS  PubMed  Google Scholar 

  66. 66.

    Gautier S, Steinmann SN, Michel C, Fleurat-Lessard P, Sautet P (2015) Molecular adsorption at Pt(111). How accurate are DFT functionals? Phys Chem Chem Phys 17(43):28921–28930

    CAS  PubMed  Google Scholar 

  67. 67.

    Hensley AJR et al (2017) DFT-based method for more accurate adsorption energies: an adaptive sum of energies from RPBE and vdW density functionals. J Phys Chem C 121(9):4937–4945

    CAS  Google Scholar 

  68. 68.

    Thinon O, Rachedi K, Diehl F, Avenier P, Schuurman Y (2009) Kinetics and mechanism of the water-gas shift reaction over platinum supported catalysts. Top Catal 52(13–20):1940–1945

    CAS  Google Scholar 

  69. 69.

    Cybulskis VJ et al (2017) Zinc promotion of platinum for catalytic light alkane dehydrogenation: insights into geometric and electronic effects. ACS Catal 7(6):4173–4181

    CAS  Google Scholar 

  70. 70.

    Kauppinen MM, Melander MM, Bazhenov AS, Honkala K (2018) Unraveling the role of the Rh-ZrO2 interface in the water-gas-shift reaction via a first-principles microkinetic study. ACS Catal 8(12):11633–11647

    CAS  Google Scholar 

  71. 71.

    Avanesian T, Dai S, Kale MJ, Graham GW, Pan X, Christopher P (2017) Quantitative and atomic-scale view of CO-induced pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J Am Chem Soc 139(12):4551–4558

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the National Science Foundation’s program for Designing Materials to Revolutionize and Engineer our Future, DMREF (CBET-1437219). Use of the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE- AC02-06CH11357, and of computational resources from the National Energy Research Scientific Computing Center, is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Greeley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14602 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghanekar, P., Kubal, J., Cui, Y. et al. Catalysis at Metal/Oxide Interfaces: Density Functional Theory and Microkinetic Modeling of Water Gas Shift at Pt/MgO Boundaries. Top Catal 63, 673–687 (2020). https://doi.org/10.1007/s11244-020-01257-4

Download citation

Keywords

  • Metal/oxide interface
  • Platinum
  • MgO
  • Density functional theory
  • Water gas shift
  • Kinetic modeling