Skip to main content

Advertisement

Log in

Kinetics of Water Gas Shift Reaction on Au/CeZrO4: A Comparison Between Conventional Heating and Dielectric Barrier Discharge (DBD) Plasma Activation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the low-temperature forward water gas shift (LT-WGS) reaction have been studied over a 2 wt% Au/CeZrO4 (Au/CZO) catalyst using both thermal and dielectric barrier discharge plasma heterogeneous catalyst systems. Using the energy density (ε), the apparent activation energy has been calculated under plasma and thermally activated conditions. A substantially lower apparent activation energy is observed in the plasma activated system (9.5 kJ/mol) compared with the thermal-catalysed reaction (132.9 kJ/mol). Different kinetic isotope effect (KIE) values for water were found in thermal (1.43) and plasma (1.89) activated catalytic systems which infer different mechanisms between the two activation processes and also shows the importance of water activation. Furthermore, negative and positive reaction orders with respect to CO and H2O are found for both conditions which are − 1.30, 0.28 under thermal and − 1.53, 0.35 under plasma processes, respectively. The reaction order with respect to H2O and KIE studies demonstrate that the bond cleavage in H2O molecule is a rate determining step in the plasma-assisted LT-WGS, similar to that in the thermal-assisted reaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tao F, Ma Z (2013) Water–gas shift on gold catalysts: catalyst systems and fundamental studies. Phys Chem Chem Phys 15:15260–15270. https://doi.org/10.1039/c3cp51326b

    Article  CAS  PubMed  Google Scholar 

  2. Torrente-Murciano L, Garcia-Garcia FR (2015) Effect of nanostructured support on the WGSR activity of Pt/CeO2 catalysts. Catal Commun 71:1–6. https://doi.org/10.1016/j.catcom.2015.07.021

    Article  CAS  Google Scholar 

  3. González ID, Navarro RM, Wen W, Marinkovic N, Rodriguez JA, Rosa F, Fierro JLG (2010) A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2. Catal Today 149:372–379. https://doi.org/10.1016/j.cattod.2009.07.100

    Article  CAS  Google Scholar 

  4. Cui Y, Li Z, Zhao Z, Cybulskis VJ, Sabnis KD, Han CW, Ortalan V, Schneider WF, Greeley J, Delgass WN, Ribeiro FH (2017) Participation of interfacial hydroxyl groups in the water-gas shift reaction over Au/MgO catalysts. Catal Sci Technol 7:5257–5266. https://doi.org/10.1039/C7CY01020F

    Article  CAS  Google Scholar 

  5. Zou J, Huang J, Ho WSW (2007) CO2-selective water gas shift membrane reactor for fuel cell hydrogen processing. Ind Eng Chem Res 46:2272–2279. https://doi.org/10.1021/ie0611453

    Article  CAS  Google Scholar 

  6. Opalka SM, Vanderspurt TH, Radhakrishnan R, She Y, Willigan RR (2008) Design of water gas shift catalysts for hydrogen production in fuel processors. J Phys Condens Matter 20:064237. https://doi.org/10.1088/0953-8984/20/6/064237

    Article  CAS  PubMed  Google Scholar 

  7. Yu KMK, Tong W, West A, Cheung K, Li T, Smith G, Guo Y, Tsang SCE (2012) Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat Commun 3:1230–1237. https://doi.org/10.1038/ncomms2242

    Article  CAS  PubMed  Google Scholar 

  8. González-Castaño M, Ivanova S, Laguna OH, Martínez LMT, Centeno MA, Odriozola JA (2017) Structuring Pt/CeO2/Al2O3 WGS catalyst: introduction of buffer layer. Appl Catal B Environ 200:420–427. https://doi.org/10.1016/j.apcatb.2016.07.039

    Article  CAS  Google Scholar 

  9. Kalamaras CM, Americanou S, Efstathiou AM (2011) “Redox” vs “associative formate with –OH group regeneration” WGS reaction mechanism on Pt/CeO2: effect of platinum particle size. J Catal 279:287–300. https://doi.org/10.1016/j.jcat.2011.01.024

    Article  CAS  Google Scholar 

  10. Daly H, Goguet A, Hardacre C, Meunier FC, Pilasombat R, Thompsett D (2010) The effect of reaction conditions on the stability of Au/CeZrO4 catalysts in the low-temperature water–gas shift reaction. J Catal 273:257–265. https://doi.org/10.1016/j.jcat.2010.05.021

    Article  CAS  Google Scholar 

  11. Pilasombat R, Daly H, Goguet A, Breen JP, Burch R, Hardacre C, Thompsett D (2012) Investigation of the effect of the preparation method on the activity and stability of Au/CeZrO4 catalysts for the low temperature water gas shift reaction. Catal Today 180:131–138. https://doi.org/10.1016/j.cattod.2011.04.053

    Article  CAS  Google Scholar 

  12. Goguet A, Burch R, Chen Y, Hardacre C, Hu P, Joyner RW, Meunier FC, Mun BS, Thompsett D, Tibiletti D (2007) Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction. J Phys Chem C 111:16927–16933. https://doi.org/10.1021/jp0743976

    Article  CAS  Google Scholar 

  13. Germani G, Schuurman Y (2006) Water-gas shift reaction kinetics over μ-structured Pt/CeO2/Al2O3 catalysts. AIChE J 52:1806–1813. https://doi.org/10.1002/aic.10764

    Article  CAS  Google Scholar 

  14. Carter JH, Liu X, He Q, Althahban S, Nowicka E, Freakley SJ, Niu L, Morgan DJ, Li Y, Niemantsverdriet JWH, Golunski S, Kiely CJ, Hutchings GJ (2017) Activation and deactivation of gold/ceria-zirconia in the low-temperature water-gas shift reaction. Angew Chem Int Ed 56:16037–16041. https://doi.org/10.1002/anie.201709708

    Article  CAS  Google Scholar 

  15. Stere CE, Anderson JA, Chansai S, Delgado JJ, Goguet A, Graham WG, Hardacre C, Taylor SFR, Tu X, Wang Z, Yang H (2017) Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis. Angew Chem Int Ed 56:5579–5583. https://doi.org/10.1002/anie.201612370

    Article  CAS  Google Scholar 

  16. Magureanu M, Dobrin D, Mandache NB, Cojocaru B, Parvulescu VI (2013) Toluene oxidation by non-thermal plasma combined with palladium catalysts. Front Chem 1:1–6. https://doi.org/10.3389/fchem.2013.00007

    Article  CAS  Google Scholar 

  17. Tang X, Gao F, Wang J, Yi H, Zhao S (2014) RSC advances nitric oxide decomposition using atmospheric pressure dielectric barrier discharge reactor with different adsorbents. RSC Adv 4:58417–58425. https://doi.org/10.1039/C4RA08447K

    Article  CAS  Google Scholar 

  18. Gibson EK, Stere CE, Curran-McAteer B, Jones W, Cibin G, Gianolio D, Goguet A, Wells PP, Catlow CRA, Collier P, Hinde P, Hardacre C (2017) Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane. Angew Chem Int Ed 56:9351–9355. https://doi.org/10.1002/anie.201703550

    Article  CAS  Google Scholar 

  19. Bogaerts A, Neyts EC (2018) Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3:1013–1027. https://doi.org/10.1021/acsenergylett.8b00184

    Article  CAS  Google Scholar 

  20. Stere CE, Adress W, Burch R, Chansai S, Goguet A, Graham WG, Hardacre C (2015) Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS. ACS Catal 5:956–964. https://doi.org/10.1021/cs5019265

    Article  CAS  Google Scholar 

  21. Whitehead JC (2016) Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns. J Phys D Appl Phys 49:243001. https://doi.org/10.1088/0022-3727/49/24/243001

    Article  CAS  Google Scholar 

  22. Kim J, Go DB, Hicks JC (2017) Synergistic effects of plasma-catalyst interactions for CH4 activation. Phys Chem Chem Phys 19:13010–13021. https://doi.org/10.1039/c7cp01322a

    Article  CAS  PubMed  Google Scholar 

  23. Nozaki T, Tsukijihara H, Fukui W, Okazaki K (2007) Kinetic analysis of the catalyst and nonthermal plasma hybrid reaction for methane steam reforming. Energy Fuels 21:2525–2530. https://doi.org/10.1021/ef070117+

    Article  CAS  Google Scholar 

  24. Meunier FC, Yablonsky G, Reid D, Shekhtman SO, Hardacre C, Burch R, Lazman M (2008) Negative apparent kinetic order in steady-state kinetics of the water-gas shift reaction over a Pt–CeO2 catalyst. Catal Today 138:216–221. https://doi.org/10.1016/j.cattod.2008.05.023

    Article  CAS  Google Scholar 

  25. Kalamaras CM, Panagiotopoulou P, Kondarides DI, Efstathiou AM (2009) Kinetic and mechanistic studies of the water–gas shift reaction on Pt/TiO2 catalyst. J Catal 264:117–129. https://doi.org/10.1016/j.jcat.2009.03.002

    Article  CAS  Google Scholar 

  26. Parastaev A, Hoeben WFLM, van Heesch BEJM, Kosinov N, Hensen EJM (2018) Temperature-programmed plasma surface reaction: an approach to determine plasma-catalytic performance. Appl Catal B Environ 239:168–177. https://doi.org/10.1016/j.apcatb.2018.08.011

    Article  CAS  Google Scholar 

  27. Karpenko A, Leppelt R, Plzak V, Caia J, Chuvilinc A, Schumachera B, Kaiserc U, Behm RJ (2007) Influence of the catalyst surface area on the activity and stability of Au/CeO2 catalysts for the low-temperature water gas shift reaction. Top Catal 44:183–198. https://doi.org/10.1007/s11244-007-0292-x

    Article  CAS  Google Scholar 

  28. Boyarkin OV, Koshelev MA, Aseev O, Maksyutenko P, Rizzo TR, Zobov NF, Lodi L, Tennyson J, Polyansky OL (2013) Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations. Chem Phys Lett 568–569:14–20. https://doi.org/10.1016/j.cplett.2013.03.007

    Article  CAS  Google Scholar 

  29. Grenoble DC, Estadt MM, Ollis DF (1981) The chemistry and catalysis of the water gas shift reaction 1. The kinetics over supported metal catalysts. J Catal 67:90–102. https://doi.org/10.1016/0021-9517(81)90263-3

    Article  CAS  Google Scholar 

  30. Kugai J, Fox EB, Song C (2015) Kinetic characteristics of oxygen-enhanced water gas shift on CeO2-supported Pt-Cu and Pd-Cu bimetallic catalysts. Appl Catal A Gen 497:31–41. https://doi.org/10.1016/j.apcata.2015.02.033

    Article  CAS  Google Scholar 

  31. Reveles JU, Saoud KM, El-Shall MS (2016) Water inhibits CO oxidation on gold cations in the gas phase. Structures and binding energies of the sequential addition of CO, H2O, O2, and N2 onto Au+. Phys Chem Chem Phys 18:28606–28616. https://doi.org/10.1039/c6cp05431e

    Article  CAS  PubMed  Google Scholar 

  32. Xiao-feng Z, Ji-long XUE, Yue M, Meng-dan Q, Sheng-jie X, Zhe-ming N (2017) Reaction mechanism of water gas shift over Aun clusters: a density functional theory study. J Fuel Chem Technol 45:1473–1480. https://doi.org/10.1016/S1872-5813(17)30064-6

    Article  Google Scholar 

  33. Sun K, Kohyama M, Tanaka S, Takeda S (2017) Reaction mechanism of the low-temperature water-gas shift reaction on Au/TiO2 catalysts. J Phys Chem C 121:12178–12187. https://doi.org/10.1021/acs.jpcc.7b02400

    Article  CAS  Google Scholar 

  34. Jacobs G, Patterson PM, Graham UM, Crawford AC, Davis BH (2005) Low temperature water gas shift: the link between the catalysis of WGS and formic acid decomposition over Pt/ceria. Int J Hydrogen Energy 30:1265–1276. https://doi.org/10.1016/j.ijhydene.2005.03.001

    Article  CAS  Google Scholar 

  35. Gao P, Graham UM, Shafer WD, Linganiso LZ, Jacobs G, Davis BH (2016) Nanostructure and kinetic isotope effect of alkali-doped Pt/silica catalysts for water-gas shift and steam-assisted formic acid decomposition. Catal Today 272:42–48. https://doi.org/10.1016/j.cattod.2015.07.007

    Article  CAS  Google Scholar 

  36. Tsang W, Richard JP (2007) A simple method to determine kinetic deuterium isotope effects provides evidence that proton transfer to carbon proceeds over and not through the reaction barrier. J Am Chem Soc 129:10330–10331. https://doi.org/10.1021/ja073679g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kukolich SG (1969) Measurement of the molecular g values in H2O and D2O and hyperfine structure in H2O. J Chem Phys 50:3751–3755. https://doi.org/10.1063/1.1671623

    Article  CAS  Google Scholar 

  38. Lide DR et al (2009) CRC handbook of chemistry and physics, 2009−2010. J Am Chem Soc 131:12862–12862. https://doi.org/10.1021/ja906434c

    Article  CAS  Google Scholar 

  39. Lappi SE, Smith B, Franzen S (2004) Infrared spectra of, and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochim Acta A 60:2611–2619. https://doi.org/10.1016/j.saa.2003.12.042

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The UK Catalysis Hub is kindly thanked for resources and support provided via our membership of the UK Catalysis Hub Consortium and funded by EPSRC (Portfolio Grants: EP/K014706/2, EP/K014668/1, EP/K014854/1, EP/K014714/1, and EP/I019693/1). K.W. and B.I. also would like to thank Science Achievement Scholarship of Thailand (SAST), Graduate School of Chiang Mai University, Center of Excellence in Materials Science and Technology, Chiang Mai University and Thailand Research Fund (the TRF Distinguished Research Professor Award to K. Grudpan, DPG6080002) for a partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Burapat Inceesungvorn or Christopher Hardacre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wangkawong, K., Phanichphant, S., Inceesungvorn, B. et al. Kinetics of Water Gas Shift Reaction on Au/CeZrO4: A Comparison Between Conventional Heating and Dielectric Barrier Discharge (DBD) Plasma Activation. Top Catal 63, 363–369 (2020). https://doi.org/10.1007/s11244-020-01245-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01245-8

Keywords

Navigation