Skip to main content

Monoterpenoid Oximes Hydrogenation Over Platinum Catalysts

Abstract

Platinum nanoparticles supported on MgO, Al2O3, ZrO2, TiO2 were utilized for monoterpenoid oximes hydrogenation. Monocyclic menthone and carvone oximes synthesized from bio-derived monoterpenoids with a different structure were used to explore the effect of substrate structure on the reaction regularities. The oximes hydrogenation was carried out under hydrogen atmosphere at 100 °C using methanol as a solvent. Platinum catalysts were prepared by the impregnation methods. The catalysts were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, nitrogen physisorption. Hydrogenation of carvone oxime containing a conjugated oxime group and several reducible functional groups resulted in both hydrogenation and deoximation giving 5-isopropyl-2-methylcyclohexanamine and carvomenthone over Pt/Al2O3 and Pt/ZrO2 catalysts. Menthone oxime hydrogenation over Pt/Al2O3 catalysts with an average particle size of 0.8 nm provided the desired menthylamine formation with the selectivity of 90% at complete oxime conversion. Platinum catalysts based on MgO, ZrO2 and TiO2 enhanced menthone oxime deoximation to menthone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Salakhutdinov NF, Volcho KP, Yarovaya OI (2017) Pure Appl Chem 89(8):1105–1118

    Article  CAS  Google Scholar 

  2. 2.

    Demidova YS, Suslov EV, Simakova OA, Simakova IL, Volcho KP, Salakhutdinov NF, Murzin DY (2016) J Mol Catal 420:142–148

    Article  CAS  Google Scholar 

  3. 3.

    Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Surburg H (2003) Flavors and fragrances. In: Ullmann F (ed) Ullmann’s encyclopedia of industrial chemistry, vol 15. Wiley, Weinheim, pp 73–198

    Google Scholar 

  4. 4.

    Kozlov NG (1982) Chem Nat Compd 18:131–143

    Article  Google Scholar 

  5. 5.

    Rykowski Z, Cieplik J, Paulus K, Pluta J, Gubrynowicz O (2007) Sci Pharm 75:1–8

    Article  CAS  Google Scholar 

  6. 6.

    Tachibana S, Maegawa Y, Nomura M, Oleo J (2007) Science 56(6):303–307

    CAS  Google Scholar 

  7. 7.

    Motherwell WB, Bingham MJ, Pothier J, Six Y (2004) Tetrahedron 60:3231–3241

    Article  CAS  Google Scholar 

  8. 8.

    Page PCB, Rassias GA, Bethell D, Schilling MB (1998) J Org Chem 63:2774–2777

    Article  CAS  Google Scholar 

  9. 9.

    Steinbeck M, Frey GD, Schoeller WW, Herrmann WA (2011) J Organomet Chem 696:3945–3954

    Article  CAS  Google Scholar 

  10. 10.

    Zhou Y, Gong Y (2011) Asymmetr Eur J Org Chem 30:6092–6099

    Article  CAS  Google Scholar 

  11. 11.

    Ortar G, De Petrocellis L, Morera L, Moriello AS, Orlando P, Morera E, Nalli M, Di Marzo V (2010) Bioorg Med Chem Lett 20:2729–2732

    Article  CAS  Google Scholar 

  12. 12.

    Dore A, Asproni B, Scampuddu A, Gessi S, Murineddu G, Cichero E, Fossa P, Merighi S, Bencivenni S, Pinna GA (2016) Bioorg Med Chem 24:5291–5301

    Article  CAS  Google Scholar 

  13. 13.

    Edinger C, Kulisch J, Waldvogel SR (2015) Beilstein J Org Chem 11:294–301

    Article  CAS  Google Scholar 

  14. 14.

    Feltkamp H, Koch F, Thanh TN (1967) Justus Liebigs Ann Chem 707:78–86

    Article  CAS  Google Scholar 

  15. 15.

    Breitner E, Roginski E, Rylander PN (1959) J Chem Soc 1959:2918–2920

    Article  Google Scholar 

  16. 16.

    Liu Y, Quan Z, He S, Zhao Z, Wang J, Wang B (2019) React Chem Eng 4:1145–1152

    Article  CAS  Google Scholar 

  17. 17.

    Barr TL (1978) J Phys Chem 82:1801–1810

    Article  CAS  Google Scholar 

  18. 18.

    Bernsmeier D, Sachse R, Bernicke M, Schmack R, Kettemann F, Polte J, Kraehnert R (2019) J Catal 369:181–189

    Article  CAS  Google Scholar 

  19. 19.

    Gołąbiewska A, Lisowski W, Jarek M, Nowaczyk G, Zielińska-Jurek A, Zaleska A (2014) Appl Surf Sci 317:1131–1142

    Article  CAS  Google Scholar 

  20. 20.

    Smirnov MY, Vovk EI, Nartova AV, Kalinkin AV, Bukhtiyarov VI (2018) Kinet Catal 59:653–662

    Article  CAS  Google Scholar 

  21. 21.

    Banerjee R, Chen DA, Karakalos S, Piedboeuf MLC, Job N, Regalbuto JF (2018) ACS Appl Nano Mater 1(10):5876–5884

    Article  CAS  Google Scholar 

  22. 22.

    Gallagher JR, Li T, Zhao H, Liu J, Lei Y, Zhang H, Ren Y, Elam JW, Meyer RJ, Winans RE, Miller JT (2014) Catal Sci Technol 4:3053–3063

    Article  CAS  Google Scholar 

  23. 23.

    Tenney SA, He W, Ratliff JS, Mullins DR, Chen DA (2011) Top Catal 54:42–55

    Article  CAS  Google Scholar 

  24. 24.

    Steinrück H-P, Pesty F, Zhang L, Madey TE (1995) Phys Rev B 51:2427–2439

    Article  Google Scholar 

  25. 25.

    Alexeev OS, Chin SY, Engelhard MH, Ortiz-Soto L, Amiridis MD (2005) J Phys Chem B 109:234330–323443

    Google Scholar 

  26. 26.

    Baker RTK, Tauster SJ, Dumesic JA (1986) Strong metal support interactions. American Chemical Society, Washington DC

    Book  Google Scholar 

  27. 27.

    Corma A, Serna P, Concepción P, Calvino J (2008) J Am Chem Soc 130:8748–8753

    Article  CAS  Google Scholar 

  28. 28.

    Serna P, Boronat M, Corma A (2011) Top Catal 54:439–446

    Article  CAS  Google Scholar 

  29. 29.

    Corma A, Serna P, Garcia H (2007) J Am Chem Soc 129:6358–6359

    Article  CAS  Google Scholar 

  30. 30.

    Shimizu K, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) J Phys Chem 113:17803–17810

    CAS  Google Scholar 

  31. 31.

    Arai M, Takada Y, Nishiyama Y (1998) J Phys Chem B 102:1968–1973

    Article  CAS  Google Scholar 

  32. 32.

    Vannice MA, Sen B (1989) J Catal 115:65–78

    Article  CAS  Google Scholar 

  33. 33.

    Shimizu K, Onodera W, Touchy AS, Siddiki SMAH, Toyao T, Kon K (2016) Chem Select 4:736–740

    Google Scholar 

  34. 34.

    Lara P, Philippot K (2004) Catal Sci Technol 4:2445–2465

    Article  Google Scholar 

  35. 35.

    Boronat M, Corma A (2010) Langmuir 26(21):16607–16614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. E.Yu. Gerasimov (TEM), I.L. Krayevskaya (XRF) and T.Ya. Efimenko (N2 physisorption) for catalysts characterization. The authors acknowledge the Multi-Access Chemical Research Center SB RAS and the Center of Collective Use «National Center of Catalyst Research» of Boreskov Institute of Catalysis for spectral and analytical measurements.

Funding

This work was supported by the Russian Foundation for Basic Research Grant No. 18–33-20175 (the synthesis of substances and the catalysts, menthone oxime hydrogenation) and by Ministry of Science and Higher Education of the Russian Federationproject No. AAAA-A17-117041710075–0 (carvone oxime hydrogenation).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Demidova.

Ethics declarations

Research Involving Human and Animal Participants

No research involving Human Participants and/or Animals was performed. In the current study accepted principles of ethical and professional conduct have been followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 678 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demidova, Y.S., Mozhaitsev, E.S., Munkuev, A.A. et al. Monoterpenoid Oximes Hydrogenation Over Platinum Catalysts. Top Catal 63, 187–195 (2020). https://doi.org/10.1007/s11244-020-01234-x

Download citation

Keywords

  • Hydrogenation
  • Carvone oxime
  • Menthone oxime
  • Menthylamine
  • Platinum catalyst
  • Terpene