Abstract
The ethanol dehydration and subsequent ethylene oligomerization to short-chain olefins using catalysts based on ZSM-5 zeolite was studied in detail. P, Fe, and Ni were added by incipient wetness impregnation on zeolites with two SiO2/Al2O3 molar ratios (50 and 80). The catalysts were characterized by N2 adsorption–desorption, XRD, SEM–EDX, FTIR spectroscopy of adsorbed pyridine, and XPS techniques, while the catalytic activity was evaluated using an isothermal fixed-bed reactor. The impregnation of P, Fe, and Ni significantly improved the formation of the desired C3+ olefins (olefins having three or more C atoms). Particularly, the zeolite with SiO2/Al2O3 molar ratio = 50 and impregnated with P, exhibited the highest selectivity (C3+ olefins > 45 wt% at TOS = 5 h) in comparison with the rest of the evaluated catalysts. On the contrary, catalysts with SiO2/Al2O3 molar ratio = 80 showed lower selectivity to C3+ olefins, producing more side products (i.e. paraffins, aromatics and diethyl-ether).
This is a preview of subscription content, access via your institution.








References
Lu J, Liu Y (2011) J Nat Gas Chem 20(2):162–166. https://doi.org/10.1016/S1003-9953(10)60163-6
Inaba M, Murata K, Saito M, Takahara I (2007) Green Chem 9(6):638–646. https://doi.org/10.1039/B614157A
Galadima A, Muraza O (2015) J Ind Eng Chem 31:1–14. https://doi.org/10.1016/j.jiec.2015.07.015
Cherubini F (2010) Ener Convers Manage 51(7):1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015
Li X, Kant A, He Y, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA (2016) Catal Today 276:62–77. https://doi.org/10.1016/j.cattod.2016.01.038
Renewable Fuels Association (2018) World fuel ethanol production. https://ethanolrfa.org/statistics/annual-ethanol-production/. Accessed 20 June 2019
Sousa ZSB, Veloso CO, Henriques CA, Teixeira da Silva V (2016) J Mol Catal a-Chem 422:266–274. https://doi.org/10.1016/j.molcata.2016.03.005
Kondo JN, Ito K, Yoda E, Wakabayashi F, Domen K (2005) J Phys Chem B 109(21):10969–10972. https://doi.org/10.1021/jp050721q
Zhang X, Wang R, Yang X, Zhang F (2008) Micropor Mesopor Mat 116(1–3):210–215. https://doi.org/10.1016/j.micromeso.2008.04.004
Nash CP, Ramanathan A, Ruddy DA, Behl M, Gjersing E, Griffin M, Zhu H, Subramaniam B, Schaidle JA, Hensley JE (2016) Appl Catal A-Gen 510:110–124. https://doi.org/10.1016/j.apcata.2015.11.019
Madeira FF, Gnep NS, Magnoux P, Maury S, Cadran N (2009) Appl Catal A-Gen 367(1–2):39–46. https://doi.org/10.1016/j.apcata.2009.07.033
Zhang D, Wang R, Yang X (2008) Catal Lett 124(3):384–391. https://doi.org/10.1007/s10562-008-9481-x
Lu J, Liu Y, Li N (2011) J Nat Gas Chem 20(4):423–427. https://doi.org/10.1016/S1003-9953(10)60193-4
Goto D, Harada Y, Furumoto Y, Takahashi A, Fujitani T, Oumi Y, Sadakane M, Sano T (2010) Appl Catal A-Gen 383(1–2):89–95. https://doi.org/10.1016/j.apcata.2010.05.032
Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T (2012) Appl Catal A-Gen 423 (Supplement C):162–167. https://doi.org/10.1016/j.apcata.2012.02.029
Song Z, Takahashi A, Mimura N, Fujitani T (2009) Catal Lett 131(3):364–369. https://doi.org/10.1007/s10562-009-0071-3
Song Z, Takahashi A, Nakamura I, Fujitani T (2010) Appl Catal A-Gen 384(1–2):201–205. https://doi.org/10.1016/j.apcata.2010.06.035
Inaba M, Murata K, Takahara I (2009) React Kinet Catal Lett 97(1):19–26. https://doi.org/10.1007/s11144-009-0002-8
Inaba M, Murata K, Takahara I, Inoue K (2011) J Chem Technol Biotechnol 86(1):95–104. https://doi.org/10.1002/jctb.2519
Inaba M, Murata K, Takahara I, Inoue K (2012) Adv Mater Sci Eng 2012:7. https://doi.org/10.1155/2012/293485
Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J (2010) Appl Catal B-Environ 97(1–2):299–306. https://doi.org/10.1016/j.apcatb.2010.04.021
Furumoto Y, Harada Y, Tsunoji N, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T (2011) Appl Catal A-Gen 399(1):262–267. https://doi.org/10.1016/j.apcata.2011.04.009
Ouyang J, Kong F, Su G, Hu Y, Song Q (2009) Catal Lett 132(1):64–74. https://doi.org/10.1007/s10562-009-0047-3
Tretyakov VF, Makarfi YI, Tretyakov KV, Frantsuzova NA, Talyshinskii RM (2010) Catal ind 2(4):402–420. https://doi.org/10.1134/s2070050410040161
Makarfi YI, Yakimova MS, Lermontov AS, Erofeev VI, Koval LM, Tretiyakov VF (2009) Chem Eng J 154(1–3):396–400. https://doi.org/10.1016/j.cej.2009.06.001
Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Fuel 89(11):3365–3372. https://doi.org/10.1016/j.fuel.2010.03.002
Phung TK, Radikapratama R, Garbarino G, Lagazzo A, Riani P, Busca G (2015) Fuel Process Technol 137:290–297. https://doi.org/10.1016/j.fuproc.2015.03.012
Van der Borght K, Galvita VV, Marin GB (2015) Appl Catal A-Gen 492:117–126. https://doi.org/10.1016/j.apcata.2014.12.020
Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41(1):207–219. https://doi.org/10.1016/S0920-5861(98)00050-9
McCue AJ, Mutch GA, McNab AI, Campbell S, Anderson JA (2016) Catal Today 259:19–26. https://doi.org/10.1016/j.cattod.2015.03.039
Pieta IS, Ishaq M, Wells RPK, Anderson JA (2010) Appl Catal A-Gen 390(1):127–134. https://doi.org/10.1016/j.apcata.2010.10.001
Emeis CA (1993) J Catal 141(2):347–354. https://doi.org/10.1006/jcat.1993.1145
Barzetti T, Selli E, Moscotti D, Forni L (1996) J Chem Soc. Faraday Trans 92(8):1401–1407. https://doi.org/10.1039/FT9969201401
Li X, Han D, Wang H, Liu G, Wang B, Li Z, Wu J (2015) Fuel 144:9–14. https://doi.org/10.1016/j.fuel.2014.12.005
Haw JF (2002) Phys Chem Chem Phys 4(22):5431–5441. https://doi.org/10.1039/B206483A
Singh R, Dutta PK (2003) MFI: a case study of zeolite synthesis. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. Marcel Dekker, Inc., New York. https://doi.org/10.1201/9780203911167
Rasouli M, Atashi H, Mohebbi-Kalhori D, Yaghobi N (2017) J Taiwan Inst Chem E 78:438–446. https://doi.org/10.1016/j.jtice.2017.05.018
Armaroli T, Simon LJ, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Appl Catal A-Gen 306:78–84. https://doi.org/10.1016/j.apcata.2006.03.030
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257(7):2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051
Yamashita T, Hayes P (2008) Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063
Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36(12):1564–1574. https://doi.org/10.1002/sia.1984
Kraushofer F, Jakub Z, Bichler M, Hulva J, Drmota P, Weinold M, Schmid M, Setvin M, Diebold U, Blaha P, Parkinson GS (2018) J Phys Chem C 122(3):1657–1669. https://doi.org/10.1021/acs.jpcc.7b10515
Mansour AN, Brizzolara RA (1996) Surf Sci Spectra 4(4):351–356. https://doi.org/10.1116/1.1247832
Mansour AN (1994) Surf Sci Spectra 3(3):231–238. https://doi.org/10.1116/1.1247751
Wang Y, Sherwood PMA (2002) Surf Sci Spectra 9(1):159–165. https://doi.org/10.1116/11.20030115
Sherwood PMA (2002) Surf Sci Spectra 9(1):62–66. https://doi.org/10.1116/11.20030101
Blasco T, Corma A, Martínez-Triguero J (2006) J Catal 237(2):267–277. https://doi.org/10.1016/j.jcat.2005.11.011
Zhuang J, Ma D, Yang G, Yan Z, Liu X, Liu X, Han X, Bao X, Xie P, Liu Z (2004) J Catal 228(1):234–242. https://doi.org/10.1016/j.jcat.2004.08.034
Marques JP, Gener I, Ayrault P, Bordado JC, Lopes JM, Ramôa Ribeiro F, Guisnet M (2003) Micropor Mesopor Mat 60(1):251–262. https://doi.org/10.1016/S1387-1811(03)00382-2
Busca G (2017) Micropor Mesopor Mat 254:3–16. https://doi.org/10.1016/j.micromeso.2017.04.007
Suganuma S, Nakamura K, Okuda A, Katada N (2017) Mol Catal 435:110–117. https://doi.org/10.1016/j.mcat.2017.03.029
Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J (2002) Ind Eng Chem Res 41(17):4216–4224. https://doi.org/10.1021/ie020068i
Ferreira Madeira F, Gnep NS, Magnoux P, Vezin H, Maury S, Cadran N (2010) Chem Eng J 161(3):403–408. https://doi.org/10.1016/j.cej.2010.01.026
Song Y, Zhang L, Li G, Shang Y, Zhao X, Ma T, Zhang L, Zhai Y, Gong Y, Xu J, Deng F (2017) Fuel Process Technol 168:105–115. https://doi.org/10.1016/j.fuproc.2017.08.020
Acknowledgements
To National Council of Science and Technology (CONACYT) for the scholarship No. 221945 granted to Ricardo Gil for his doctoral studies. To the BIOTURBOSINA cluster, under support from CONACYT-SENER project No. 248090, for the resources granted to carry out this research. To National Laboratory of Nano and Biomaterials (LANNBIO), CINVESTAV-Mérida, under founding from projects FOMIX Yucatán 2008–108160 CONACYT LAB-2009–01-123913, 292692, 294643, for the facilities to perform the BET and XPS characterization analysis. To UNICAT-FQ-UNAM for the facilities to perform the FTIR acidity characterization. To Tanit Toledano Thompson (UER-CICY) for her technical assistance in SEM–EDX measurements.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gil-Horán, R.H., Chavarría-Hernández, J.C., Quintana-Owen, P. et al. Ethanol Conversion to Short-Chain Olefins Over ZSM-5 Zeolite Catalysts Enhanced with P, Fe, and Ni. Top Catal 63, 414–427 (2020). https://doi.org/10.1007/s11244-020-01229-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11244-020-01229-8
Keywords
- Ethanol to hydrocarbons
- ZSM-5 zeolite
- Short-chain olefins
- Phosphorus
- Iron
- Nickel