Skip to main content
Log in

Molecular Dynamics Study of Molecular and Dissociative Adsorption Using System-Specific Force Fields Based on Ab Initio Calculations: CO/Cu(110) and \(\text {CH}_4/\text {Pt(110)}\)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We present results of quasi-classical trajectory (QCT) calculations of the molecular and dissociative sticking probability of CO on Cu(110), and of \(\text {CH}_4\) on Pt(110)-(2 × 1) respectively. Our QCT calculations make use of reactive force fields (RFF) specifically developed for the systems/processes of interest by fitting of a large set of Density Functional Theory (DFT) total energy data. Through these two selected examples of great importance for a deep understanding of relevant chemical reactions on metal surfaces, we illustrate the potentiality of QCT calculations based on accurate RFFs built on ab initio data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Quasi-classical is used instead of simply classical, to refer to those trajectory calculations in which the quantized initial roto-vibrational energy of the molecules is taken into account.

References

  1. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  3. Burke K (2012) J Chem Phys 136(15):150901. https://doi.org/10.1063/1.4704546

    Article  CAS  PubMed  Google Scholar 

  4. Kroes GJ, Díaz C (2016) Chem Soc Rev 45:3658. https://doi.org/10.1039/C5CS00336A

    Article  CAS  PubMed  Google Scholar 

  5. Jiang B, Yang M, Xie D, Guo H (2016) Chem Soc Rev 45:3621. https://doi.org/10.1039/C5CS00360A

    Article  CAS  PubMed  Google Scholar 

  6. Maurer RJ, Ruiz VG, Camarillo-Cisneros J, Liu W, Ferri N, Reuter K, Tkatchenko A (2016) Prog Surf Sci 91(2):72. https://doi.org/10.1016/j.progsurf.2016.05.001

    Article  CAS  Google Scholar 

  7. Kroes GJ (2012) Phys Chem Chem Phys 14:14966. https://doi.org/10.1039/C2CP42471A

    Article  CAS  PubMed  Google Scholar 

  8. Groß A (2010) ChemPhysChem 11(7):1374. https://doi.org/10.1002/cphc.200900818

    Article  CAS  PubMed  Google Scholar 

  9. Tersoff J (1988) Phys Rev Lett 61:2879. https://doi.org/10.1103/PhysRevLett.61.2879

    Article  CAS  PubMed  Google Scholar 

  10. Brenner DW (1990) Phys Rev B 42:9458. https://doi.org/10.1103/PhysRevB.42.9458

    Article  CAS  Google Scholar 

  11. Chenoweth K, van Duin ACT, Goddard WA (2008) J Phys Chem A 112(5):1040. https://doi.org/10.1021/jp709896w

    Article  CAS  PubMed  Google Scholar 

  12. Xiao Y, Dong W, Busnengo HF (2010) J Chem Phys 132(1):014704. https://doi.org/10.1063/1.3265854

    Article  CAS  PubMed  Google Scholar 

  13. Behler J (2016) J Chem Phys 145(17):170901. https://doi.org/10.1063/1.4966192

    Article  CAS  PubMed  Google Scholar 

  14. Kresse G, Hafner J (1994) Phys Rev B 49:14251. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  15. Kresse G, Hafner J (1994) J. Phys.: Condens. Matt. 6:8245

    CAS  Google Scholar 

  16. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  17. Sowa EC, Van Hove MA, Adams DL (1988) Surf Sci 199(1):174. https://doi.org/10.1016/0039-6028(88)90406-2

    Article  CAS  Google Scholar 

  18. Korte U, Meyer-Ehmsen G (1992) Surf Sci 271(3):616. https://doi.org/10.1016/0039-6028(92)90923-T

    Article  CAS  Google Scholar 

  19. Chadwick H, Gutiérrez-González A, Beck RD, Kroes GJ (2019) J Chem Phys 150(12):124702. https://doi.org/10.1063/1.5081005

    Article  CAS  PubMed  Google Scholar 

  20. Blöchl PE (1994) Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  21. Kresse G, Joubert D (1999) Phys Rev B 59:1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  23. Perdew JP, Wang Y (1992) Phys Rev B 45:13244. https://doi.org/10.1103/PhysRevB.45.13244

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  25. Shen XJ, Lozano A, Dong W, Busnengo HF, Yan XH (2014) Phys Rev Lett 112:046101. https://doi.org/10.1103/PhysRevLett.112.046101

    Article  CAS  PubMed  Google Scholar 

  26. Lozano A, Shen X, Moiraghi R, Dong W, Busnengo H (2015) Surf Sci 640:25. https://doi.org/10.1016/j.susc.2015.04.002 Reactivity Concepts at Surfaces: Coupling Theory with Experiment

    Article  CAS  Google Scholar 

  27. Wong SSM (1997) Computational methods in physics and engineering. World Scientific, Singapore

    Book  Google Scholar 

  28. Harendt C, Goschnick J, Hirschwald W (1985) Surf Sci 152–153:453. https://doi.org/10.1016/0039-6028(85)90176-1

    Article  Google Scholar 

  29. Anghel AT, Wales DJ, Jenkins SJ, King DA (2005) Phys Rev B 71:113410. https://doi.org/10.1103/PhysRevB.71.113410

    Article  CAS  Google Scholar 

  30. Nave S, Tiwari AK, Jackson B (2010) J Chem Phys 132:054705

    Article  PubMed  Google Scholar 

  31. Sewell TD, Thompson DL (1997) Int J Mod Phys B 11(09):1067. https://doi.org/10.1142/S0217979297000551

    Article  CAS  Google Scholar 

  32. Kunat M, Boas C, Becker T, Burghaus U, Wöll C (2001) Surf Sci 474(1–3):114. https://doi.org/10.1016/S0039-6028(00)01041-4

    Article  CAS  Google Scholar 

  33. Bonfanti M, Martinazzo R (2016) Int J Quantum Chem 116(21):1575. https://doi.org/10.1002/qua.25192

    Article  CAS  Google Scholar 

  34. Bisson R, Sacchi M, Beck RD (2010) J Chem Phys 132(9):094702. https://doi.org/10.1063/1.3328885

    Article  CAS  PubMed  Google Scholar 

  35. Jackson B (213) In: Díez Muiño R, Busnengo HF (eds) Dynamics of gas-surface interactions, Springer Series in Surface Sciences, vol 50. Springer, Berlin, chap 9, pp.213–237. https://doi.org/10.1007/978-3-642-32955-5_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo National de Investigationes Científicas Técnicas (CONICET) and Ministerio de Educación, Cultura, Ciencia y Tecnología (ME) of Argentina and the Swiss National Science Foundation under the Argentinian-Swiss Joint Research Program (ASJRP) project Nr. IZSAZ2-173328 as well as the ANPCyT project PICT N 2750 (ME-Argentina), and the UNR project PID ING534. Ths authors acknowledge computer time provided by CCT-Rosario Computational Center, and Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC), members of the High Performance Computing National System (SNCAD, ME-Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fabio Busnengo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seminara, G.N., Peludhero, I.F., Dong, W. et al. Molecular Dynamics Study of Molecular and Dissociative Adsorption Using System-Specific Force Fields Based on Ab Initio Calculations: CO/Cu(110) and \(\text {CH}_4/\text {Pt(110)}\). Top Catal 62, 1044–1052 (2019). https://doi.org/10.1007/s11244-019-01196-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01196-9

Keywords

Navigation