Site Selective Detection of Methane Dissociation on Stepped Pt Surfaces

Abstract

We report a combined experimental and theoretical study comparing methane dissociation on three different platinum surfaces Pt(111), Pt(211), and Pt(110)-(1 × 2). Reflection absorption infrared spectroscopy (RAIRS) was used to detect chemisorbed methyl species formed by dissociative chemisorption of CH4 on specific surface sites and to measure surface-site-specific sticking coefficients of CH4 on the terrace, step, and ridge sites as function of incident translational energy. Methane dissociation is observed to be direct on all sites and diffusion of the chemisorbed methyl species is absent for surface temperature below 150 K. The experimental data are compared with the results of density functional (DFT) calculations that give minimum energy barriers for CH4 chemisorption that properly account for the experimental relative site-specific reactivities. Also in agreement with experiments, DFT results predict a negligible effect of co-adsorbed H and CH3 species on the vibrational frequency of a methyl group chemisorbed on terrace and step sites of Pt(211). However, the origin of the red-shift of the RAIRS peak of CH3 chemisorbed on terrace sites compared with that on step sites of Pt(211) remains elusive and still demands further investigation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, Weinheim

    Google Scholar 

  2. 2.

    Juurlink LBF, Killelea DR, Utz AL (2009) Prog Surf Sci 84:69

    CAS  Google Scholar 

  3. 3.

    Utz AL (2009) Curr Opin Solid State Mater Sci 13:4

    CAS  Google Scholar 

  4. 4.

    Chadwick H, Beck RD (2017) Annu Rev Phys Chem 68:39

    CAS  Google Scholar 

  5. 5.

    Chadwick H, Beck RD (2016) Chem Soc Rev 45:3576

    CAS  Google Scholar 

  6. 6.

    Rettner CT, Pfnür HE, Auerbach DJ (1985) Phys Rev Lett 54:2716

    CAS  Google Scholar 

  7. 7.

    Rettner CT, Pfnür HE, Auerbach DJ (1986) J Chem Phys 84:4163

    CAS  Google Scholar 

  8. 8.

    Juurlink L, McCabe P, Smith R, DiCologero C, Utz AL (1999) Phys Rev Lett 83:868

    CAS  Google Scholar 

  9. 9.

    Hundt PM, Jiang B, van Reijzen ME, Guo H, Beck RD (2014) Science 344:504

    CAS  Google Scholar 

  10. 10.

    Bisson R, Dang TT, Sacchi M, Beck RD (2008) J Chem Phys 129:081103

    Google Scholar 

  11. 11.

    Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR (2003) Science 302:98

    CAS  Google Scholar 

  12. 12.

    Smith RR, Killelea DR, DelSesto DF, Utz AL (2004) Science 304:992

    CAS  Google Scholar 

  13. 13.

    Bisson R, Sacchi M, Dang TT, Yoder B, Maroni P, Beck RD (2007) J Phys Chem 111:12679

    CAS  Google Scholar 

  14. 14.

    Bisson R, Sacchi M, Beck RD (2010) Phys Rev B 82:121404

    Google Scholar 

  15. 15.

    Donald SB, Harrison I (2012) Phys Chem Chem Phys 14:1784

    CAS  Google Scholar 

  16. 16.

    DeWitt KM, Valadez L, Abbott HL, Kolasinski KW, Harrison I (2006) J Phys Chem B 110:6705

    CAS  Google Scholar 

  17. 17.

    Abbott HL, Bukoski A, Harrison I (2004) J Chem Phys 121:3792

    CAS  Google Scholar 

  18. 18.

    Lozano A, Shen XJ, Moiraghi R, Dong W, Busnengo HF (2015) Surf Sci 640:25

    CAS  Google Scholar 

  19. 19.

    Guo H, Jackson B (2015) J Phys Chem C 119:14769

    CAS  Google Scholar 

  20. 20.

    Jiang B, Guo H (2013) J Phys Chem C 117:16127

    CAS  Google Scholar 

  21. 21.

    Migliorini D, Chadwick H, Nattino F, Gutiérrez-González A, Dombrowski E, High EA, Guo H, Utz AL, Jackson B, Beck RD, Kroes GJ (2017) J Phys Chem Lett 8:4177

    CAS  PubMed Central  PubMed  Google Scholar 

  22. 22.

    Nattino F, Migliorini D, Bonfanti M, Kroes GJ (2016) J Chem Phys 144:044702

    Google Scholar 

  23. 23.

    Kroes GJ (2015) J Phys Chem Lett 6:4106

    CAS  Google Scholar 

  24. 24.

    Sabbe MK, Reyniers MF, Reuter K (2012) Catal. Sci Technol 2:2010

    CAS  Google Scholar 

  25. 25.

    Vattuone L, Savio L, Rocca M (2008) Surf Sci Rep 63:101

    CAS  Google Scholar 

  26. 26.

    Libuda J, Freund HJ (2005) Surf Sci Rep 57:157

    CAS  Google Scholar 

  27. 27.

    Juurlink L (2018) J Phys: Condens Matter 30:090301

    Google Scholar 

  28. 28.

    Gee AT, Hayden BE, Mormiche C, Kleyn AW, Riedmüller B (2003) J Chem Phys 118:3334

    CAS  Google Scholar 

  29. 29.

    King DA, Wells MG (1972) Surf Sci 29:454

    CAS  Google Scholar 

  30. 30.

    Badan C, Koper MTM, Juurlink LBF (2015) J Phys Chem C 119:13551

    CAS  Google Scholar 

  31. 31.

    Papp C, Tränkenschuh B, Streber R, Fuhrmann T, Denecke R, Steinrück HP (2007) J Phys Chem C 111:2177

    CAS  Google Scholar 

  32. 32.

    Chadwick H, Guo H, Gutiérrez-González A, Menzel JP, Jackson B, Beck RD (2018) J Chem Phys 148:014701

    Google Scholar 

  33. 33.

    Jackson B, Nave S (2011) J Chem Phys 135:114701

    Google Scholar 

  34. 34.

    Nave S, Tiwari AK, Jackson B (2014) J Phys Chem A 118:9615

    CAS  Google Scholar 

  35. 35.

    Papoian G, Nørskov JK, Hoffmann R (2000) J Am Chem Soc 122:4129

    CAS  Google Scholar 

  36. 36.

    Michaelides A, Hu P (2001) J Chem Phys 114:2523

    CAS  Google Scholar 

  37. 37.

    Petersen MA, Jenkins SJ, King DA (2004) J Phys Chem B 108:5909

    CAS  Google Scholar 

  38. 38.

    Ford DC, Xu L, Mavrikakis M (2005) Surf Sci 587:159

    CAS  Google Scholar 

  39. 39.

    Nave S, Tiwari AK, Jackson B (2010) J Chem Phys 132:054705

    Google Scholar 

  40. 40.

    Chen Y, Vlachos DG (2010) J Phys Chem C 114:4973

    CAS  Google Scholar 

  41. 41.

    Viñes F, Lykhach Y, Staudt T, Lorenz MPA, Papp C, Steinrück HP, Libuda J, Neyman KM, Görling A (2010) Chem A Eur J 16:6530

    Google Scholar 

  42. 42.

    Qi Q, Wang X, Chen L, Li B (2013) Appl Surf Sci 284:784

    CAS  Google Scholar 

  43. 43.

    Mukerji RJ, Bolina AS, Brown WA (2003) Surf Sci 527:198

    CAS  Google Scholar 

  44. 44.

    Gutiérrez-González A, Crim FF, Beck RD (2018) J Chem Phys 149:074701

    Google Scholar 

  45. 45.

    Chen L, Ueta H, Bisson R, Beck RD (2013) Rev Sci Instrum 84:053902

    Google Scholar 

  46. 46.

    Scoles G (1988) Atomic and molecular beam methods. Oxford University Press, New York

    Google Scholar 

  47. 47.

    Speller S, Kuntze J, Rauch T, Bömermann J, Huck M, Aschoff M, Heiland W (1996) Surf Sci 366:251

    CAS  Google Scholar 

  48. 48.

    Tate MR, Gosalvez-Blanco D, Pullman DP, Tsekouras AA, Li YL, Yang JJ, Laughlin KB, Eckman SC, Bertino MF, Ceyer ST (1999) J Chem Phys 111:3679

    CAS  Google Scholar 

  49. 49.

    Blöchl PE (1994) Phys Rev B 50:17953

    Google Scholar 

  50. 50.

    Kresse G, Hafner J (1993) Phys Rev B 47:558

    CAS  Google Scholar 

  51. 51.

    Kresse G, Hafner J (1994) Phys Rev B 49:14251

    CAS  Google Scholar 

  52. 52.

    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    CAS  Google Scholar 

  53. 53.

    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    CAS  Google Scholar 

  54. 54.

    Kresse G, Joubert D (1999) Phys Rev B 59:1758

    CAS  Google Scholar 

  55. 55.

    https://cms.mpi.univie.ac.at/wiki/index.php/The_VASP_Manual

  56. 56.

    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    CAS  PubMed Central  PubMed  Google Scholar 

  57. 57.

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    PubMed Central  PubMed  Google Scholar 

  58. 58.

    Klimeš J, Bowler DR, Michaelides A (2010) J Phys: Condens Matter 22:022201

    Google Scholar 

  59. 59.

    Chen L, Ueta H, Bisson R, Beck RD (2012) Faraday Discuss 157:285

    CAS  Google Scholar 

  60. 60.

    Oakes DJ, Mccoustra MRS, Chesters MA (1993) Faraday Discuss 96:325

    CAS  Google Scholar 

  61. 61.

    Bădescu C, Jacobi K, Wang Y, Bedürftig K, Ertl G, Salo P, Ala-Nissila T, Ying SC (2003) Phys Rev B Condens Matter Mater Phys 68:205401

    Google Scholar 

  62. 62.

    Fairbrother DH, Peng XD, Trenary M, Stair PC (1995) J Chem Soc Faraday Trans 91:3619

    CAS  Google Scholar 

  63. 63.

    Deng R, Herceg E, Trenary M (2004) Surf Sci 573:310

    CAS  Google Scholar 

  64. 64.

    Jacob T, Goddard WA III (2005) J Phys Chem B 109:297

    CAS  Google Scholar 

  65. 65.

    Orita H, Inada Y (2005) J Phys Chem B 109:22469

    CAS  Google Scholar 

  66. 66.

    Walsh AJ, van Lent R, Auras SV, Gleeson MA, Berg OT, Juurlink LBF (2017) J Vac Sci Technol A Vac Surf Film 35:03E102

    Google Scholar 

  67. 67.

    Xu J, Yates JT (1995) Surf Sci 327:193

    CAS  Google Scholar 

  68. 68.

    Bisson R, Sacchi M, Beck RD (2010) J Chem Phys 132:094702

    Google Scholar 

  69. 69.

    Brandt RK, Sorbello RS, Greenler RG (1992) Surf Sci 271:605

    CAS  Google Scholar 

  70. 70.

    Chadwick H, Gutiérrez-González A, Beck RD, Kroes GJ (2019) J Chem Phys 150:124702

    Google Scholar 

  71. 71.

    Calle-Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS (2015) Science 350:185

    CAS  Google Scholar 

  72. 72.

    Petersen MA, Jenkins SJ, King DA (2004) J Phys Chem B 108:5920

    CAS  Google Scholar 

  73. 73.

    Olsen RA, Bǎdescu ŞC, Ying SC, Baerends EJ (2004) J Chem Phys 120:11852

    CAS  Google Scholar 

  74. 74.

    Anghel AT, Wales DJ, Jenkins SJ, King DA (2005) Phys Rev B Condens Matter Mater Phys 71:2

    Google Scholar 

  75. 75.

    Hammer B, Nørskov JK (1995) Surf Sci 343:211

    CAS  Google Scholar 

  76. 76.

    Hammer B, Nørskov JK (1995) Nature 376:238

    CAS  Google Scholar 

  77. 77.

    Hammer B, Nørskov JK (2000) Adv Catal 45:71

    CAS  Google Scholar 

  78. 78.

    Watanabe K, Matsumoto Y (1997) Surf Sci 390:250

    CAS  Google Scholar 

  79. 79.

    Killelea DR, Campbell VL, Shuman NS, Smith RR, Utz AL (2009) J Phys Chem C 113:20618

    CAS  Google Scholar 

  80. 80.

    Ueta H, Chen L, Beck RD, Colón-Díaz I, Jackson B (2013) Phys Chem Chem Phys 15:20526

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo National de Investigationes Cientificas Técnicas (CONICET) and Ministerio de Educación, Cultura, Ciencia y Tecnología (ME) of Argentina and the Swiss National Science Foundation under the Argentinian-Swiss Joint Research Program (ASJRP) Project Nr. IZSAZ2-173328 as well as the ANPCyT Project PICT No. 2750 (ME-Argentina), and the UNR project PID ING534. M.E.T and H.F.B acknowledge computer time provided by CCT-Rosario Computational Center, and Centro de Simulación Computacional para Aplicaciones Tecnológicas (CSC), members of the High Performance Computing National System (SNCAD, ME-Argentina).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to H. F. Busnengo or R. D. Beck.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-González, A., Torio, M.E., Busnengo, H.F. et al. Site Selective Detection of Methane Dissociation on Stepped Pt Surfaces. Top Catal 62, 859–873 (2019). https://doi.org/10.1007/s11244-019-01170-5

Download citation

Keywords

  • Pt surfaces
  • Methane
  • RAIRS
  • DFT