Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance

  • A. Guerrero-Torres
  • C. P. Jiménez-Gómez
  • J. A. CeciliaEmail author
  • C. García-Sancho
  • F. Franco
  • J. J. Quirante-Sánchez
  • P. Maireles-Torres
Original Paper


Nickel-based catalysts supported on sepiolite catalysts, with a nickel loading between 1 and 10 wt%, have been synthesized by several synthetic strategies (precipitation-deposition, impregnation and grafting-complexation) and subsequent calcination and reduction. The catalysts were characterized by H2 thermoprogrammed reduction (H2-TPR), X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption at − 196 °C, NH3 thermoprogrammed desorption (NH3-TPD) and CO chemisorption. FUR hydrogenation in gas-phase revealed that the most active catalyst was the catalyst synthesized by the grafting-complexation method due to its highest metallic surface area and smallest metal crystal size, reaching a FUR yield close to 85% after 5 h of time-on-stream (TOS) at 190 °C, using a H2:FUR molar ratio of 11.5 and a WHSV of 1.5 h−1. Furan (F), methylfuran (MF) and furfuryl alcohol (FOL); however, the selectivity towards F and MF tend to decrease with the TOS, while FOL selectivity increases.


Ni-based catalysts Sepiolite Furfural Furfuryl alcohol Methylfuran Furan 



The authors are grateful to financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2015-64226-C03-03-R project), Junta de Andalucía (RNM-1565) and FEDER funds.


  1. 1.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRefGoogle Scholar
  2. 2.
    Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189CrossRefGoogle Scholar
  3. 3.
    Delbecq F, Wang Y, Muralidhara A, El Ouardi K, Marlair G, Len C (2018) Hydrolysis of hemicellulose and derivatives—a review of recent advances in the production of furfural. Front Chem. 6:146CrossRefGoogle Scholar
  4. 4.
    Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. Elsevier, Ney WorkGoogle Scholar
  5. 5.
    Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676CrossRefGoogle Scholar
  6. 6.
    Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd, and Ni. Catal Lett 141:784–791CrossRefGoogle Scholar
  7. 7.
    Shi Y, Zhu Y, Yang Y, Li YW, Jiao H (2015) Exploring furfural catalytic conversion on Cu (111) from computation. ACS Catal 5:4020–4032CrossRefGoogle Scholar
  8. 8.
    Jiménez-Gómez CP, Cecilia JA, Moreno-Tost R, Maireles-Torres P (2017) Selective production of 2-methylfuran by gas-phase hydrogenation of furfural on copper incorporated by complexation in mesoporous silica catalysts. Chemsuschem 10:1448–1459CrossRefGoogle Scholar
  9. 9.
    Jiménez-Gómez CP, Cecilia JA, Moreno-Tost R, Maireles-Torres P (2017) Nickel phosphide/silica catalysts for the gas-phase hydrogenation of furfural to high-added-value chemicals. ChemCatChem 9:2881–2889CrossRefGoogle Scholar
  10. 10.
    Nakagawa Y, Tamura M, Tomishige K (2017) Supported metal catalysts for total hydrogenation of furfural and 5-hydroxymethylfurfural. J Jpn Petrol Inst 60:1–9CrossRefGoogle Scholar
  11. 11.
    Manikandan M, Venugopal AK, Prabu K, Jha RK, Thirumalaiswamy R (2016) Role of surface synergistic effect on the performance of Ni-based hydrotalcite catalyst for highly efficient hydrogenation of furfural. J Mol Catal A Chem 417:153–162CrossRefGoogle Scholar
  12. 12.
    Sulmonetti TP, Pang SH, Claure MT, Lee S, Cullen DA, Agrawal PK, Jones CW (2016) Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides. Appl Catal A. 517:187–195CrossRefGoogle Scholar
  13. 13.
    Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198CrossRefGoogle Scholar
  14. 14.
    Murray HH (2006) Structure and composition of the clay minerals and their physical and chemical properties. Dev Clay Sci 2:7–31CrossRefGoogle Scholar
  15. 15.
    Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRefGoogle Scholar
  16. 16.
    Brunauer S, Emmett P, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  17. 17.
    Landers J, Gor G, Neimark A (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Aspects 437:3–32CrossRefGoogle Scholar
  18. 18.
    Cecilia JA, Jiménez-Morales I, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2013) Influence of the silica support on the activity of Ni and Ni2P based catalysts in the hydrodechlorination of chlorobenzene. Study of factors governing catalyst deactivation. J Mol Catal A: Chem 368:78–87CrossRefGoogle Scholar
  19. 19.
    Tang S, Lin J, Tan KL (1998) Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2. Catal Lett 51:169–175CrossRefGoogle Scholar
  20. 20.
    He S, Wu H, Yu W, Mo L, Lou H, Zheng X (2009) Combination of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2 and Ni-Al2O3/SiO2 catalysts with different precursors. Int J Hydrogen Energy 34:839–843CrossRefGoogle Scholar
  21. 21.
    Bailey SW (1984) Structures of layer silicates. Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, LondonGoogle Scholar
  22. 22.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodríguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069CrossRefGoogle Scholar
  23. 23.
    Jiménez-Gómez CP, Cecilia JA, Durán-Martín D, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Mariscal R, Maireles-Torres P (2016) Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. J Catal 336:107–115CrossRefGoogle Scholar
  24. 24.
    Jiménez-Gómez CP, Cecilia JA, Márquez-Rodríguez I, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Maireles-Torres P (2017) Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catal Today 279:327–338CrossRefGoogle Scholar
  25. 25.
    Hadjiivanov K, Knözinger H, Mihaylov M (2002) FTIR study of CO adsorption on Ni-ZSM-5. J Phys Chem B 106:2618–2624CrossRefGoogle Scholar
  26. 26.
    Dong F, Zhu Y, Zheng H, Zhu Y, Li X, Li Y (2015) Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: the synergistic effect of metal and acid sites. J Mol Catal A Gen 398:140–148CrossRefGoogle Scholar
  27. 27.
    Sitthisa S, Sooknoi T, Ma Y, Balbuena PB, Resasco DE (2011) Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts. J Catal 277:1–13CrossRefGoogle Scholar
  28. 28.
    Nagarajav BM, Padmasri AH, Raju BD, Rama Rao KS (2007) Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts. J Mol Catal A Chem 265:90–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de CienciasUniversidad de MálagaMálagaSpain
  2. 2.Departamento de Química Física, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations