Skip to main content

Advertisement

Log in

Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Formic acid and methanol are considered as liquid organic hydrogen carriers and could be produced sustainably from biomass or by CO2 hydrogenation using catalysts. The choice of a catalyst for decomposition of these substances is a challenge. We prepared N-free and N-doped mesoporous carbon materials containing less than 2 wt% of gold not stabilized by chlorine anions. High-angle annular dark field scanning transmission electron microscopy (STEM) data showed that the supported gold was present in the state of single Au atoms and Au nanoparticles after reduction. The use of the N-doped carbon support allowed reaching high dispersion of the Au nanoparticles with a mean size of ~ 2 nm, as compared to ~ 10 nm for the N-free support. Density functional theory studies indicated that a single Au atom may attach strongly (> 3.6 eV) to carbon atoms on the graphene edge or even more strongly to carbon atoms in a double vacancy; however, it may attach only weakly to N species of the N-doped carbon. Formic acid and methanol molecules interact relatively strongly (~ 0.75 eV and ~ 1.0 eV, respectively) via their oxygen atoms with the Au atom on the graphene edge, while they interact only weakly with the graphene fragments containing the Au atoms in double vacancies (~ 0.4 eV and ~ 0.3 eV, respectively). This demonstrates importance of coordinative unsaturation of Au atoms for adsorption and may influence further reactivity of the adsorbed species. The obtained results can be used for development of catalysts and electrocatalysts containing single Au atoms for hydrogen production from liquid organic hydrogen carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li H, Zhang H-X, Yan X-L, Xu B-S, Guo J-J (2018) Carbon-supported metal single atom catalysts. New Carbon Mater 33(1):1–11. https://doi.org/10.1016/S1872-5805(18)60322-1

    Article  CAS  Google Scholar 

  2. Mitchell S, Vorobyeva E, Pérez-Ramírez J (2018) Reactivity of single-atom heterogeneous catalysts: unique and multifaceted. Angew Chem Int Ed 57(47):15316–15329. https://doi.org/10.1002/anie.201806936

    Article  CAS  Google Scholar 

  3. Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2(6):65–81. https://doi.org/10.1038/s41570-018-0010-1

    Article  CAS  Google Scholar 

  4. Wang C, Yang M, Flytzani-Stephanopoulos M (2016) Single gold atoms stabilized on nanoscale metal oxide supports are catalytic active centers for various reactions. AIChE J 62(2):429–439. https://doi.org/10.1002/aic.15134

    Article  CAS  Google Scholar 

  5. Rivera-Cárcamo C, Serp P (2018) Single atom catalysts on carbon-based materials. ChemCatChem 10:5059–5091. https://doi.org/10.1002/cctc.201801174

    Article  CAS  Google Scholar 

  6. Bayatsarmadi B, Zheng Y, Vasileff A, Qiao S-Z (2017) Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 13(21):1700191. https://doi.org/10.1002/smll.201700191

    Article  CAS  Google Scholar 

  7. Qiao B, Liang J-X, Wang A, Liu J, Zhang T (2016) Single atom gold catalysts for low-temperature CO oxidation. Chin J Catal 37(10):1580–1586. https://doi.org/10.1016/S1872-2067(16)62529-9

    Article  CAS  Google Scholar 

  8. Wang Z, Gu L, Song L, Wang H, Yu R (2018) Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Mater Chem Front 2(5):1024–1030. https://doi.org/10.1039/C8QM00081F

    Article  CAS  Google Scholar 

  9. Malta G, Kondrat SA, Freakley SJ, Davies CJ, Lu L, Dawson S, Thetford A, Gibson EK, Morgan DJ, Jones W, Wells PP, Johnston P, Catlow CRA, Kiely CJ, Hutchings GJ (2017) Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355(6332):1399–1403. https://doi.org/10.1126/science.aal3439

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Conte M, Elias D, Lu L, Morgan DJ, Freakley SJ, Johnston P, Kiely CJ, Hutchings GJ (2016) Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. Catal Sci Technol 6(13):5144–5153. https://doi.org/10.1039/C6CY00090H

    Article  CAS  Google Scholar 

  11. Hardcastle TP, Seabourne CR, Zan R, Brydson RMD, Bangert U, Ramasse QM, Novoselov KS, Scott AJ (2013) Mobile metal adatoms on single layer, bilayer, and trilayer graphene: An ab invitio DFT study with van der Waals corrections correlated with electron microscopy data. Phys Rev B. https://doi.org/10.1103/PhysRevB.87.195430

    Article  Google Scholar 

  12. Zan R, Bangert U, Ramasse Q, Novoselov KS (2011) Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy. Nano Lett 11(3):1087–1092. https://doi.org/10.1021/nl103980h

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Li K, Cheng Y, Wang Q, Yao Y, Schwingenschlögl U, Zhang X, Yang W (2012) Interaction between single gold atom and the graphene edge: a study via aberration-corrected transmission electron microscopy. Nanoscale 4(9):2920–2925. https://doi.org/10.1039/C2NR00059H

    Article  CAS  PubMed  Google Scholar 

  14. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykko P, Nieminen RM (2009) Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.102.126807

    Article  PubMed  Google Scholar 

  15. Kunaseth M, Poldorn P, Junkeaw A, Meeprasert J, Rungnim C, Namuangruk S, Kungwan N, Inntam C, Jungsuttiwong S (2017) A DFT study of volatile organic compounds adsorption on transition metal deposited graphene. Appl Surf Sci 396:1712–1718. https://doi.org/10.1016/j.apsusc.2016.11.238

    Article  CAS  Google Scholar 

  16. Pulido A, Boronat M, Corma A (2011) Theoretical investigation of gold clusters supported on graphene sheets. New J Chem 35(10):2153–2161. https://doi.org/10.1039/c1nj20215d

    Article  CAS  Google Scholar 

  17. Rangel E, Magana LF, Sansores LE (2014) A theoretical study of the interaction of hydrogen and oxygen with palladium or gold adsorbed on pyridine-like nitrogen-doped graphene. ChemPhysChem 15(18):4042–4048. https://doi.org/10.1002/cphc.201402532

    Article  CAS  PubMed  Google Scholar 

  18. Tang Y, Yang Z, Dai X (2011) Trapping of metal atoms in the defects on graphene. J Chem Phys 135(22):224704. https://doi.org/10.1063/1.3666849

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Sun LT, Xu ZJ, Krasheninnikov AV, Huai P, Zhu ZY, Banhart F (2010) Migration of gold atoms in graphene ribbons: Role of the edges. Phys Rev B. https://doi.org/10.1103/PhysRevB.81.125425

    Article  Google Scholar 

  20. Bulushev DA, Zacharska M, Shlyakhova EV, Chuvilin AL, Guo Y, Beloshapkin S, Okotrub AV, Bulusheva LG (2016) Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal 6(2):681–691. https://doi.org/10.1021/acscatal.5b02381

    Article  CAS  Google Scholar 

  21. Zacharska M, Bulusheva LG, Lisitsyn AS, Beloshapkin S, Guo Y, Chuvilin AL, Shlyakhova EV, Podyacheva OY, Leahy JJ, Okotrub AV, Bulushev DA (2017) Factors influencing the performance of Pd/C catalysts in the green production of hydrogen from formic acid. ChemSusChem 10(4):720–730. https://doi.org/10.1002/cssc.201601637

    Article  CAS  PubMed  Google Scholar 

  22. Podyacheva OY, Bulushev DA, Suboch AN, Svintsitskiy DA, Lisitsyn AS, Modin E, Chuvilin A, Gerasimov EY, Sobolev VI, Parmon VN (2018) Highly stable single-atom catalyst with Ionic Pd active sites supported on N-doped carbon nanotubes for formic acid decomposition. ChemSusChem 11(21):3724–3727. https://doi.org/10.1002/cssc.201801679

    Article  CAS  PubMed  Google Scholar 

  23. Bulushev DA, Zacharska M, Lisitsyn AS, Podyacheva OY, Hage FS, Ramasse QM, Bangert U, Bulusheva LG (2016) Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal 6:3442–3451. https://doi.org/10.1021/acscatal.6b00476

    Article  CAS  Google Scholar 

  24. Zacharska M, Podyacheva OY, Kibis LS, Boronin AI, Senkovskiy BV, Gerasimov EY, Taran OP, Ayusheev AB, Parmon VN, Leahy JJ, Bulushev DA (2015) Ruthenium clusters on carbon nanofibers for formic acid decomposition: effect of doping the support with nitrogen. ChemCatChem 7(18):2910–2917. https://doi.org/10.1002/cctc.201500216

    Article  CAS  Google Scholar 

  25. Bulushev DA, Chuvilin AL, Sobolev VI, Stolyarova SG, Shubin YV, Asanov IP, Ishchenko AV, Magnani G, Ricco M, Okotrub AV, Bulusheva LG (2017) Copper on carbon materials: stabilization by nitrogen doping. J Mater Chem A 5(21):10574–10583. https://doi.org/10.1039/C7TA02282D

    Article  CAS  Google Scholar 

  26. Zhao J, Xu J, Xu J, Zhang T, Di X, Ni J, Li X (2015) Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support. Chem Eng J 262:1152–1160. https://doi.org/10.1016/j.cej.2014.10.071

    Article  CAS  Google Scholar 

  27. Gil S, Lucas PJ, Nieto-Márquez A, Sánchez-Silva L, Giroir-Fendler A, Romero A, Valverde JL (2014) Synthesis and characterization of nitrogen-doped carbon nanospheres decorated with Au nanoparticles for the liquid-phase oxidation of glycerol. Ind Eng Chem Res 53(43):16696–16706. https://doi.org/10.1021/ie502873x

    Article  CAS  Google Scholar 

  28. Lin R, Albani D, Fako E, Kaiser SK, Safonova OV, López N, Pérez-Ramírez J (2019) Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semi-hydrogenation. Angew Chem Int Ed 58(2):504–509. https://doi.org/10.1002/anie.201805820

    Article  CAS  Google Scholar 

  29. Bulushev DA, Ross JRH (2018) Towards sustainable production of formic acid. ChemSusChem 11:821–836. https://doi.org/10.1002/cssc.201702075

    Article  CAS  PubMed  Google Scholar 

  30. Preuster P, Albert J (2018) Biogenic formic acid as a green hydrogen carrier. Energy Technology 6(3):501–509. https://doi.org/10.1002/ente.201700572

    Article  CAS  Google Scholar 

  31. Kamarudin SK, Shamsul NS, Ghani JA, Chia SK, Liew HS, Samsudin AS (2013) Production of methanol from biomass waste via pyrolysis. Biores Technol 129:463–468. https://doi.org/10.1016/j.biortech.2012.11.016

    Article  CAS  Google Scholar 

  32. Hamelinck CN, Faaij APC (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111(1):1–22. https://doi.org/10.1016/S0378-7753(02)00220-3

    Article  CAS  Google Scholar 

  33. Bulushev DA, Ross JRH (2018) Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. Catal Rev 60(4):566–593. https://doi.org/10.1080/01614940.2018.1476806

    Article  CAS  Google Scholar 

  34. Joo O-S, Jung K-D, Moon I, Rozovskii AY, Lin GI, Han S-H, Uhm S-J (1999) Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process). Ind Eng Chem Res 38(5):1808–1812. https://doi.org/10.1021/ie9806848

    Article  CAS  Google Scholar 

  35. Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev 117:9804–9838. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shlyakhova EV, Bulusheva LG, Kanygin MA, Plyusnin PE, Kovalenko KA, Senkovskiy BV, Okotrub AV (2014) Synthesis of nitrogen-containing porous carbon using calcium oxide nanoparticles. Phys Status Solidi B 251:2607–2612. https://doi.org/10.1002/pssb.201451228

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  38. Bulushev DA, Yuranov I, Suvorova EI, Buffat PA, Kiwi-Minsker L (2004) Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J Catal 224(1):8–17. https://doi.org/10.1016/j.jcat.2004.02.014

    Article  CAS  Google Scholar 

  39. Wojnicki M, Rudnik E, Luty-Blocho M, Socha RP, Pedzich Z, Fitzner K, Mech K (2016) Kinetic studies of gold recovery from diluted chloride aqueous solutions using activated carbon organosorb 10 CO. Aust J Chem 69(3):254–261. https://doi.org/10.1071/ch15275

    Article  CAS  Google Scholar 

  40. Kim SM, Kim KK, Jo YW, Park MH, Chae SJ, Duong DL, Yang CW, Kong J, Lee YH (2011) Role of anions in the AuCl3-doping of carbon nanotubes. ACS Nano 5(2):1236–1242. https://doi.org/10.1021/nn1028532

    Article  CAS  PubMed  Google Scholar 

  41. Bowden B, Davies M, Davies PR, Guan S, Morgan DJ, Roberts V, Wotton D (2018) The deposition of metal nanoparticles on carbon surfaces: the role of specific functional groups. Faraday Discuss 208:455–470. https://doi.org/10.1039/C7FD00210F

    Article  CAS  PubMed  Google Scholar 

  42. Podyacheva OY, Ismagilov ZR (2015) Nitrogen-doped carbon nanomaterials: to the mechanism of growth, electrical conductivity and application in catalysis. Catal Today 249:12–22. https://doi.org/10.1016/j.cattod.2014.10.033

    Article  CAS  Google Scholar 

  43. Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal 7(12):8090–8112. https://doi.org/10.1021/acscatal.7b02335

    Article  CAS  Google Scholar 

  44. Fong Y-Y, Visser BR, Gascooke JR, Cowie BCC, Thomsen L, Metha GF, Buntine MA, Harris HH (2011) Photoreduction kinetics of sodium tetrachloroaurate under synchrotron soft X-ray exposure. Langmuir 27(13):8099–8104. https://doi.org/10.1021/la200463k

    Article  CAS  PubMed  Google Scholar 

  45. Mananghaya M, Rodulfo E, Santos GN, Villagracia AR, Ladines AN (2012) Theoretical investigation on single-wall carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms. J Nanomater. https://doi.org/10.1155/2012/104891

    Article  Google Scholar 

  46. Singh S, Li S, Carrasquillo-Flores R, Alba-Rubio AC, Dumesic JA, Mavrikakis M (2014) Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments. AIChE J 60(4):1303–1319. https://doi.org/10.1002/aic.14401

    Article  CAS  Google Scholar 

  47. Rousseau R, Marx D (2000) The interaction of gold clusters with methanol molecules: Ab initio molecular dynamics of Au +n CH3OH and AunCH3OH. J Chem Phys 112(2):761–769. https://doi.org/10.1063/1.480719

    Article  CAS  Google Scholar 

  48. Li Y-C, Yang C-L, Sun M-Y, Li X-X, An Y-P, Wang M-S, Ma X-G, Wang D-H (2009) Density functional theory studies of Aun+(CH3OH)m (n = 3, 5, m = 1 − 5) complexes. J Phys Chem A 113(7):1353–1359. https://doi.org/10.1021/jp808040v

    Article  CAS  PubMed  Google Scholar 

  49. N’dollo M, Moussounda PS, Dintzer T, M’Passi-Mabiala B, Garin F (2013) Density functional theory (DFT) investigation of the adsorption of the CH3OH/Au(100) system. Surf Interface Anal 45(9):1410–1418. https://doi.org/10.1002/sia.5302

    Article  CAS  Google Scholar 

  50. Gong J, Flaherty DW, Ojifinni RA, White JM, Mullins CB (2008) Surface chemistry of methanol on clean and atomic oxygen pre-covered Au(111). J Phys Chem C 112(14):5501–5509. https://doi.org/10.1021/jp0763735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was conducted with the financial support of the Russian Science Foundation (Grant 16-13-00016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitri A. Bulushev or Lyubov G. Bulusheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulushev, D.A., Chuvilin, A.L., Sobolev, V.I. et al. Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules. Top Catal 62, 508–517 (2019). https://doi.org/10.1007/s11244-019-01166-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01166-1

Keywords

Navigation