Skip to main content

Advertisement

Log in

Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A novel route for obtaining iridium-based electrocatalysts supported on sub-stoichiometric titanium oxides for catalytic applications is presented. Chloride-free titanium oxide nanoparticles have been produced in a H2/O2-flame reactor using titanium (IV) tetraisopropoxide as precursor material. Fuel rich combustion leads to the formation of sub-stoichiometric titania (TiO2−x) with an increased number of oxygen vacancies and enhanced electrical conductivity. Subsequently, TiO2−x was dispersed in 2-propanol and spray coated on titanium substrate under argon atmosphere, forming a titania layer. This multilayered support system was decorated with iridium nanoparticles from an iridium-based electrolyte, applying an electrochemical method. This deposition technique leads to an optimized allocation of the electrocatalyst particles, adequate adhesion to the support and, furthermore, ensures the electrical conductivity from the deposited Ir particles via the TiO2−x coating towards the titanium substrate. Finally, this process generated electrochemically active electrodes for the oxygen evolution reaction (OER) in acidic environment. The mean crystallite size of the iridium catalyst was determined from the X-ray diffraction patterns according to the Debye–Scherrer equation to be 11.4 nm. Linear and cyclic voltammetry were performed in 0.5 M H2SO4 on the iridium/titania/titanium samples and proved the electrochemical activity of the prepared system. The increased catalytic activity of the prepared iridium samples was indicated by a decrease of the Tafel slope for the Ti-PTL/TiO2−x/Ir in comparison to electrochemically oxidized iridium sample. At higher overpotentials, the calculated Tafel slopes (112 mV dec−1) present greater values than commonly reported Tafel slopes for IrO2 based electrodes, revealing a different rate determining step for the OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang L, Lettenmeier P et al (2016) Phys Chem Chem Phys 18:4487–4495

    Article  CAS  PubMed  Google Scholar 

  2. Ma L, Sui S, Zhai Y (2008) J Power Sources 177:470–477

    Article  CAS  Google Scholar 

  3. Song Y, Yang J, Gong X (2015) Top Catal 58:675–681

    Article  CAS  Google Scholar 

  4. Streibel V, Hävecker M et al (2018) Top Catal 61:2064–2084

    Article  CAS  Google Scholar 

  5. Noack C, Burggraf F et al (2015) Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck. Deutsches Zentrum für Luft- und Raumfahrt, Stuttgart

    Google Scholar 

  6. Man S, Su H et al (2011) ChemCatChem 3:1159–1165

    Article  CAS  Google Scholar 

  7. Wang L, Song F et al (2017) J Mater Chem A 5:3172–3178

    Article  CAS  Google Scholar 

  8. Rice R, Keptner D (2004) Appl Catal 262:233–239

    Article  CAS  Google Scholar 

  9. Song S, Zhang H et al (2008) Hydrog Energy 33:4955–4961

    Article  CAS  Google Scholar 

  10. Lettenmeier P, Wang L et al (2016) Angew Chem 128:752–756

    Article  Google Scholar 

  11. Juodkazyte J, Sebeka B et al (2005) Electroanal 17:947–952

    Article  CAS  Google Scholar 

  12. Liu C, Carmo M et al (2018) Electrochem Commun 97:96–99

    Article  CAS  Google Scholar 

  13. Vot S, Roué L, Bélanger D (2012) Electrochim Acta 59:49–56

    Article  CAS  Google Scholar 

  14. Toledo-Antonio J, Angeles-Chavez C et al (2016) Top Catal 59:366–377

    Article  CAS  Google Scholar 

  15. Sharma S, Pollet B (2012) J Power Sources 208:96–119

    Article  CAS  Google Scholar 

  16. Leichtweiss T, Henning R et al (2014) J Mater Chem A 2:6631–6640

    Article  CAS  Google Scholar 

  17. Arif A, Balgis R et al (2017) Sci Rep 7:3646–3654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Näther J, Köster F et al (2017) IOP Conf Ser: Mater Sci Eng 181:012041

    Article  Google Scholar 

  19. Antolini E (2014) ACS Catal 4:1426–1440

    Article  CAS  Google Scholar 

  20. Abidov A, Allabergenov B et al (2013) Int J Mater Mech Manufact 1:294–296

    CAS  Google Scholar 

  21. Pan X, Yang MQ et al (2013) Nanoscale 5:3601–3614

    Article  CAS  Google Scholar 

  22. Freakley SJ, Ruiz-Esquius J et al (2017) Surf Interface Anal 49:794–799

    Article  CAS  Google Scholar 

  23. Siracusano S, Baglio V et al (2017) J Power Sources 366:105–114

    Article  CAS  Google Scholar 

  24. Siracusano S, Baglio V et al (2009) Electrochim Acta 54:6292–6299

    Article  CAS  Google Scholar 

  25. Geiger S, Kasian O et al (2016) J Electrochem Soc 163:3121–3138

    Article  CAS  Google Scholar 

  26. Cherevko S, Geiger S et al (2016) J Electroanal Chem 773:69–78

    Article  CAS  Google Scholar 

  27. Burke L, Naser N, Ahern B (2007) J Solid State Electrochem 11:655–666

    Article  CAS  Google Scholar 

  28. Lettenmeier P, Majchel J et al (2018) Chem Sci 9:3570–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present work has been carried out under the scope of the project “Entwicklung von kostengünstigen und nachhaltigen Elektrodensystemen auf Basis von optimierten Iridium/Titanoxid-Schichten für den Einsatz in der PEM-Wasserelektrolyse”. The IGF project (19817 N) of the research association (Umwelttechnik) was approved by the AiF within the framework of the program for the promotion of industrial community research and development (IGF) by the Federal Ministry of Economics and Technology Funded by the German Bundestag. Furthermore, we thank GKN Sinter Metals Filters GmbH, Germany, for manufacturing the Ti-based electrode structures, which were used as support material for our study and RUBION Center from Ruhr-University Bochum for accomplishing the XPS Analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Rost.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muntean, R., Pascal, D.T., Rost, U. et al. Investigation of Iridium Nanoparticles Supported on Sub-stoichiometric Titanium Oxides as Anodic Electrocatalysts in PEM Electrolysis. Part I.: Synthesis and Characterization. Top Catal 62, 429–438 (2019). https://doi.org/10.1007/s11244-019-01164-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01164-3

Keywords

Navigation