Co(II, III) Hydroxides Supported on Zeolite Acting as an Efficient and Robust Catalyst for Catalytic Water Oxidation with Ru(bpy)33+

Abstract

A novel highly efficient and stable for many cycles catalyst (1% Со-ZSM-5(17)) for water oxidation was developed using the method of polycondensation for stabilization of oxo/hydroxo complexes of cobalt (II, III) and nanosize Co3O4 in zeolite channels. In a weak-alkaline medium (pH 8.0, 9.2, 10.0) in the presence of a one-electron oxidant (Ru(bpy)33+), the catalyst provided the yield of oxygen as high as 56, 73 и 78% of the stoichiometric quantity, respectively. Catalysts based on ZSM-5 zeolite exhibited higher catalytic activity as compared to the catalysts based on the MOR, BEA, Y. Inspection of the electron states of cobalt in the Co-containing zeolite-based catalysts using TPR-H2 and UV–Vis DR techniques revealed that α-Co(OH)2-like polynuclear clusters and hydrocomplexes stabilized in the zeolite channels were most active to catalytic oxidation of water, while their transformation to Co3O4-like clusters/nanoparticles and Co2+ oxocomplexes, respectively, during thermal treatment led to some decrease in the catalyst efficiency. Coarsening of Co3O4-like clusters/nanoparticles caused the further decrease in the system efficiency. The minimal activity was observed with the catalysts containing predominantly isolated Co2 +Oh ions. The result obtained indicates a kind of at least polynuclear structure of the catalytically active center ConOx, where n > 2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Swierk JR, Mallouk TE (2013) Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 42(6):2357–2387. https://doi.org/10.1039/c2cs35246j

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Chikunov AS, Taran OP, Shubin AA, Zil’berberg IL, Parmon VN (2018) Oxidation of water to molecular oxygen by one-electron oxidants on transition metal hydroxides. Kin Catal 59(1):23–47. https://doi.org/10.1134/S0023158418010032

    CAS  Article  Google Scholar 

  3. 3.

    Locke E, Jiang S, Beaumont SK (2018) Catalysis of the oxygen evolution reaction by 4–10 nm cobalt nanoparticles. Top Catal 61(9–11):977–985. https://doi.org/10.1007/s1124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Rosen J, Hutchings GS, Jiao F (2013) Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J Am Chem Soc 135:4516–4521. https://doi.org/10.1021/ja400555q

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chou NH, Ross PN, Bell AT, Tilley TD (2011) Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemCatChem 4(11):1566–1569. https://doi.org/10.1002/cssc.201100075

    CAS  Article  Google Scholar 

  6. 6.

    Volpato GA, Bonetto A, Marcomini A, Mialane P, Bonchio M, Natali M, Sartorel A (2018) Proton coupled electron transfer from Co3O4 nanoparticles to photogenerated Ru(bpy)3 3+: base catalysis and buffer effect. Sustainable Energy Fuels 2(9):1951–1956. https://doi.org/10.1039/c8se00275d

    CAS  Article  Google Scholar 

  7. 7.

    Song F, Ding Y, Ma B, Wang C, Wang Q, Du X, Song J (2013) K7[CoIIICoII(H2O)W11O39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation. En Env Sci 6(4):1170. https://doi.org/10.1039/c3ee24433d

    CAS  Article  Google Scholar 

  8. 8.

    Lin J, Meng X, Zheng M, Ma B, Ding Y (2018) Insight into a hexanuclear cobalt complex: strategy to construct efficient catalysts for visible light-driven water oxidation. App Catal B: Env 241:351–358. https://doi.org/10.1016/j.apcatb.2018.09.052

    CAS  Article  Google Scholar 

  9. 9.

    9 Yang C-C, Eggenhuisen TM, Wolters M, Agiral A, Frei H, Jongh PE, Jong KP, Mul G (2013) Effects of support, particle size, and process parameters on Co3O4 catalyzed H2O oxidation mediated by the [Ru(bpy)3]2+ persulfate system. ChemCatChem 5(2):550–556. https://doi.org/10.1002/cctc.201200696

    CAS  Article  Google Scholar 

  10. 10.

    Nicholls D (1973) The chemistry of iron, cobalt and nickel: comprehensive inorganic chemistry, 199. Pergamon Press, Oxford

    Google Scholar 

  11. 11.

    Song F, More R, Schilling M, Smolentsev G, Azzaroli N, Fox T, Luber S, Patzke GR (2017) {Co4O4} and {CoxNi4–xO4} cubane water oxidation catalysts as surface cut-outs of cobalt oxides. J Am Chem Soc 139:14198–14208. https://doi.org/10.1021/jacs.7b07361

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Pestunova OP, Elizarova GL, Parmon VN (2000) Kinetics and mechanism of water catalytic oxidation by a Ru3+(bpy)3 complex in the presence of colloidal cobalt hydroxide. Kin Catal 41(3):340–348. https://doi.org/10.1007/BF02755370

    CAS  Article  Google Scholar 

  13. 13.

    Deng X, Rin R, Tseng J-C, Weidenthaler C, Apfel U-P, Tüysüz H (2017) Monodispersed mesoporous silica spheres supported Co3O4 as robust catalyst for oxygen evolution reaction. ChemCatChem 9(22):4238–4243. https://doi.org/10.1002/cctc.201701001

    CAS  Article  Google Scholar 

  14. 14.

    Chen Z, Miao S, Guan J, Zhang F, Li C (2016) Sub-2 nm cobalt oxide cluster catalyst supported on alumina for efficient water oxidation. Appl Catal A 521:154–159. https://doi.org/10.1016/j.apcata.2015.11.039

    CAS  Article  Google Scholar 

  15. 15.

    Biegun M, Chen X, Mijowska E (2018) Cobalt/carbon nanocomposite as oxygen evolution reaction electrocatalyst. ChemElectroChem 5:1–6. https://doi.org/10.1002/celc.201800355

    CAS  Article  Google Scholar 

  16. 16.

    Wang Z, Peng S, Hu Y, Li L, Yan T, Yang G, Ji D, Srinivasan M, Pan Z, Ramakrishna S (2017) Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. J Mater Chem A 5:4949–4961. https://doi.org/10.1039/C6TA10291C

    CAS  Article  Google Scholar 

  17. 17.

    Zhang M, Huang Y-L, Wang J-W, Lu T-B (2016) A facile method for the synthesis of a porous cobalt oxide–carbon hybrid as a highly efficient water oxidation catalyst. J Mater Chem A 4:1819–1827. https://doi.org/10.1039/C5TA07813J

    CAS  Article  Google Scholar 

  18. 18.

    Meng X, Dong Y, Hu Q, Ding Y (2018) Co nanoparticles decorated with nitrogen doped carbon nanotubes for boosting photocatalytic water splitting. ACS Sust Chem Engin. https://doi.org/10.1021/acssuschemeng.8b05632

    Article  Google Scholar 

  19. 19.

    Evangelisti F, Car P-E, Blacque O, Patzke GR (2013) Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core. Catal Sci Technol 3:3117–3129. https://doi.org/10.1039/C3CY00475A

    CAS  Article  Google Scholar 

  20. 20.

    Wei J, Feng Y, Zhou P, Liu Y, Xu J, Xiang R, Ding Y, Zhao C, Fan L, Hu C (2015) A bioinspired molecular polyoxometalate catalyst with two cobalt(II) oxide cores for photocatalytic water oxidation. ChemSusChem 8(16):2630–2634. https://doi.org/10.1002/cssc.201500490

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Deng X, Tuysuz H (2014) Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal 4:3701–3714. https://doi.org/10.1021/cs500713d

    CAS  Article  Google Scholar 

  22. 22.

    Cejka J, Caorma A, Zones S (2010) Zeolites and catalysis: synthesis, reactions and applications, vol. 1–2. Wiley, Weinheim, p 881. https://doi.org/10.1002/9783527630295

    Google Scholar 

  23. 23.

    Shrestha S, Dutta PK (2016) Photochemical water oxidation by manganese oxides supported on zeolite surfaces. Chem Select 1:1431–1440. https://doi.org/10.1002/slct.201600208

    CAS  Article  Google Scholar 

  24. 24.

    Krivoruchko OP, Gavrilov VY, Molina IY, Larina TV (2008) Distribution of the cobalt-containing component in the pore space of HZSM-5 upon a postsynthetic modification of the zeolite with hydroxo compounds of Co2+. Kinet Catal 49(2):285–290. https://doi.org/10.1134/S0023158408020171

    CAS  Article  Google Scholar 

  25. 25.

    Yashnik SA, Salnikov AV, Vasenin NT, Anufrienko VF, Ismagilov ZR (2012) Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+. Catal Tod 197:214–227. https://doi.org/10.1016/j.cattod.2012.08.033

    CAS  Article  Google Scholar 

  26. 26.

    Creuts C, Sutin N (1975) Reaction of Ru(bpy)3 3+ with hydroxide and its application in a solar energy storage system. Proc Nat Acad Sci USA 72:2855–2862

    Google Scholar 

  27. 27.

    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, p 30

    Google Scholar 

  28. 28.

    Yashnik SA, Ismagilov ZR, Anufrienko VF (2005) Catalytic properties and electronic structure of copper ions in Cu-ZSM-5. Catal Today 110:310–322. https://doi.org/10.1016/j.cattod.2005.09.029

    CAS  Article  Google Scholar 

  29. 29.

    Tomic-Tucakovic B, Majstorovic D, Jelic D, Mentus S (2012) Thermogravimetric study of the kinetics of Co3O4 reduction by hydrogen. Thermochim Acta 541:15–24. https://doi.org/10.1016/j.tca.2012.04.018

    CAS  Article  Google Scholar 

  30. 30.

    Lever ABP (1984) Inorganic electron spectroscopy, Vol. 2. Elsevier, Amsterdam

    Google Scholar 

  31. 31.

    Dedecek J, Kaucky D, Wichterlova B (2000) Co2+ ion siting in pentasil-containing zeolites, part 3. Co2+ ion sites and their occupation in ZSM-5: a VIS diffuse reflectance spectroscopy study. Microporous Mesoporous Mater 35–36:483–494. https://doi.org/10.1016/S1387-1811(99)00244-9

    Article  Google Scholar 

  32. 32.

    Dedecek J, Capek L, Kaucky D, Sobalik Z, Wichterlova B (2002) Siting and distribution of the Co ions in beta zeolite: a UV–Vis–NIR and FTIR study. J Catal 211:198–207. https://doi.org/10.1006/jcat.2002.3697

    CAS  Article  Google Scholar 

  33. 33.

    Cruz RS, Mascarenhas AJS, Andrade HMC (1998) Co-ZSM-5 catalysts for N2O decomposition. Appl Catal B 18:223–231. https://doi.org/10.1016/S0926-3373(98)00042-3

    Article  Google Scholar 

  34. 34.

    El-Malki E-M, Werst D, Doan PE, Sachtler WMH (2000) Coordination of Co2+ cations inside cavities of zeolite MFI with lattice oxygen and adsorbed ligands. J Phys Chem B 104:5924–5931. https://doi.org/10.1021/jp000540i

    CAS  Article  Google Scholar 

  35. 35.

    Gil B, Pietrzyk P, Datka J, Kozyra P, Sojka Z (2005) Speciation of cobalt in CoZSM-5 upon thermal treatment. Stud Surf Sci Catal 158:893–900. https://doi.org/10.1016/S0167-2991(05)80427-6

    Article  Google Scholar 

  36. 36.

    Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. Wiley Interscience, New York, pp 267–274

    Google Scholar 

  37. 37.

    Krivoruchko OP, Larina TV, Anufrienko VF, Molina IY, Paukshtis EA (2009) Synthesis, electronic state, and particle size stabilization of nanoparticulate [Co(OH)2(H3O)d+]d+. Inorg Matt 45(12):1355–1361. https://doi.org/10.1134/S0020168509120097

    CAS  Article  Google Scholar 

  38. 38.

    Liu PF, Yang S, Zheng LR, Zhang B, Yang HG (2016) Electrochemical etching of a-cobalt hydroxide for improvement of oxygen evolution reaction. J Mater Chem A 4:9578–9584. https://doi.org/10.1039/C6TA04078K

    CAS  Article  Google Scholar 

  39. 39.

    Zhao Z, Geng F, Bai J, Cheng H_M (2007) Facile and controlled synthesis of 3D nanorods-based urchinlike and nanosheets-based flowerlike cobalt basic salt nanostructures. J Phys Chem C 111:3848–3852. https://doi.org/10.1021/jp067320a

    CAS  Article  Google Scholar 

  40. 40.

    Chapman B (2004) Transition metals, quantitative kinetics and applied organic chemistry. Nelson Thornes Ltd., Oxford, p 142

    Google Scholar 

  41. 41.

    Jeevanandam P, Koltypin Yu, Gedanken A, Mastai Y (2000) Synthesis of a-cobalt(II) hydroxide using ultrasound radiation. J Mater Chem 10:511–514. https://doi.org/10.1039/A908065A

    CAS  Article  Google Scholar 

  42. 42.

    Jayashree RS, Vishnu Kamath P (1999) Electrochemical synthesis of a-cobalt hydroxide. J Mater Chem 9:961–963. https://doi.org/10.1039/A807000H

    CAS  Article  Google Scholar 

  43. 43.

    Brownson JRS, Levy-Clement C (2009) Nanostructure α- and β-cobalt hydroxide thin films. Electrochim Acta 54:6637–6644

    CAS  Article  Google Scholar 

  44. 44.

    Wang X, Chen H, Sachtler WMH (2001) Selective reduction of NOx with hydrocarbons over Co/MFI prepared by sublimation of CoBr2 and other methods. Appl Catal B 29:47–60. https://doi.org/10.1016/S0926-3373(00)00186-7

    Article  Google Scholar 

  45. 45.

    Bustamante F, Cordoba F, Yates M, Montes de Correa C (2002) The promotion of cobalt mordenite by palladium for the lean CH4-SCR of NOx in moist streams. Appl Catal A 234:127–136. https://doi.org/10.1016/S0926-860X(02)00211-9

    CAS  Article  Google Scholar 

  46. 46.

    Resini C, Montanari T, Nappi L, Bagnasco G, Turco M, Busca G, Bregani F, Notaro M, Rocchini G (2003) Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterisation and catalytic activity. J Catal 214:179–190. https://doi.org/10.1016/S0021-9517(02)00153-7

    CAS  Article  Google Scholar 

  47. 47.

    Bagnasco G, Turco M, Resini C, Montanari T, Bevilacqua M, Busca G (2004) On the role of external Co sites in NO oxidation and reduction by methane over Co–H-MFI catalysts. J Catal 225:536–540. https://doi.org/10.1016/j.jcat.2004.04.011

    CAS  Article  Google Scholar 

  48. 48.

    Ulla MA, Gutierrez L, Lombardo EA, Lonyi F, Valyon J (2004) Catalytic features of Pt,Co-mordenite for the SCR of NOx monitored by DRIFT spectroscopy using adsorbed N2 as a probe. Appl Catal A: Gen 277:227–237. https://doi.org/10.1016/j.apcata.2004.09.016

    CAS  Article  Google Scholar 

  49. 49.

    Bellmann A, Atia H, Bentrup U, Bruckne A (2018) Mechanism of the selective reduction of NOx by methane over Co-ZSM-5. Appl Catal B 230:184–193. https://doi.org/10.1016/j.apcatb.2018.02.051

    CAS  Article  Google Scholar 

  50. 50.

    Yashnik SA, Ismagilov ZR (2015) Cu-substituted ZSM-5 catalyst: controlling of DeNOx reactivity via ion-exchange mode with copper-ammonia solution. Appl Catal B 170–171:241–254. https://doi.org/10.1016/j.apcatb.2015.01.021

    CAS  Article  Google Scholar 

  51. 51.

    Sivan V, Iyengar GNK (1976) Reduction kinetics of cobaltic oxide (Co3O4) in hydrogen. Trans Indian Inst Met 29:83–91

    CAS  Google Scholar 

  52. 52.

    Sexton BA, Hughes AE, Turney TW (1986) An XPS and TPR study of the reduction of promoted cobalt–kieselguhr fischer–tropsch catalysts. J Catal 97:390–406. https://doi.org/10.1016/0021-9517(86)90011-4

    CAS  Article  Google Scholar 

  53. 53.

    Wu R-J, Wu J-G, Tsai T-K, Yeh C-T (2006) Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures. Sens Actuators B 120:104–109

    CAS  Article  Google Scholar 

  54. 54.

    Tang C-W, Wang C-B, Chien S-H (2008) Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim Acta 473:68–73. https://doi.org/10.1016/j.tca.2008.04.015

    CAS  Article  Google Scholar 

  55. 55.

    Rosynek MP, Polansky ChA (1991) Effect of cobalt source on the reduction properties of silica-supported cobalt catalysts. App Catal 73:97–112. https://doi.org/10.1016/0166-9834(91)85115-C

    CAS  Article  Google Scholar 

  56. 56.

    Xie R, Li D, Hou B, Wang J, Jia L, Sun Y (2011) Silylated Co3O4-m-SiO2 catalysts for Fischer–Tropsch synthesis. Catal Commun 12:589–592. https://doi.org/10.1016/j.catcom.2010.12.013

    CAS  Article  Google Scholar 

  57. 57.

    Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, Yamashita K, Umena Y, Nakabayashi M, Yamane T, Nakano T, Suzuki M, Masuda T, Inoue S, Kimura T, Nomura T, Yonekura S, Yu LJ, Sakamoto T, Motomura T, Chen JH, Kato Y, Noguchi T, Tono K, Joti Y, Kameshima T, Hatsui T, Nango E, Tanaka R, Naitow H, Matsuura Y, Yamashita A, Yamamoto M, Nureki O, Yabashi M, Ishikawa T, Iwata S, Shen JR (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543(7643):131–135. https://doi.org/10.1038/nature21400

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Akhtar US, Tae EL, Chun YS, Hwang IC, Yoon KB (2016) Insights into decomposition pathways and fate of Ru(bpy)3 2+ during photocatalytic water oxidation with S2O8 2– as sacrificial electron acceptor. ACS Catal 6(12):8361–8369. https://doi.org/10.1021/acscatal.6b02595

    CAS  Article  Google Scholar 

  59. 59.

    Zidki T, Zhang L, Shafirovich V, Lymar SV (2012) Water oxidation catalyzed by cobalt(II) adsorbed on silica nanoparticles. J Am Chem Soc 134:14275–14278. https://doi.org/10.1021/ja304030y

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Barelocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th Revised edn. Elsevier, Amsterdam

    Google Scholar 

  61. 61.

    Biner M, Buergi HB, Ludi A, Roehr C (1992) Crystal and molecular structures of [Ru(bpy)3](PF6)3 and [Ru(bpy)3](PF6)2 at 105 K. J Am Chem Soc 114(13):5197–5203. https://doi.org/10.1021/ja00039a034

    CAS  Article  Google Scholar 

  62. 62.

    Bainbridge M, Clarkson JS, Parnham BL, Tabatabaei J, Tyers DV, Waugh KC (2017) Evidence for support effects in metal oxide supported cobalt catalysts. Cat Struct React 3(3):128–137. https://doi.org/10.1080/2055074X.2017.1281718

    CAS  Article  Google Scholar 

  63. 63.

    Park K-W, Kolpak AM (2018) Understanding photocatalytic overall water splitting on CoO nanoparticles: Effects of facets, surface stoichiometry, and the CoO/water interface. J Catal 365:115–124. https://doi.org/10.1016/j.jcat.2018.06.021

    CAS  Article  Google Scholar 

  64. 64.

    Porkrant S, Dilger S, Landsmann S, Trottmann M (2017) Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting. Mat Tod Energ 158–163. https://doi.org/10.1016/j.mtener.2017.06.005

  65. 65.

    Chikunov AS, Taran OP, Pyshnaya IA, Parmon VN (2019) Colloidal FeIII, MnIII, CoIII, and CuII hydroxides stabilized by starch as catalysts of water oxidation reaction with one electron oxidant Ru(bpy)3 3+. ChemPhysChem 20:410–421. https://doi.org/10.1002/cphc.201800957

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345. https://doi.org/10.1126/science.1185372

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of the budget projects No. АААА-А17-117041710086-6 for Boreskov Institute of Catalysis and No. 0356-2016-0503 for Institute of Chemistry and Chemical Technology SB RAS. This support is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Svetlana A. Yashnik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yashnik, S.A., Chikunov, A.S., Taran, O.P. et al. Co(II, III) Hydroxides Supported on Zeolite Acting as an Efficient and Robust Catalyst for Catalytic Water Oxidation with Ru(bpy)33+. Top Catal 62, 439–455 (2019). https://doi.org/10.1007/s11244-019-01158-1

Download citation

Keywords

  • Water splitting
  • One-electron oxidants
  • Cobalt hydroxides
  • Zeolite
  • Oxygen evolution reaction