Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs Catalytic Hydrogen Transfer

Abstract

Raney nickel catalysts have been tested in the transformation of glucose into sorbitol through a hydrogen transfer pathway in the presence of short chain alcohols. Comparison between different sacrificing alcohols evidenced that catalytic hydrogen transfer (CHT) was only possible from ethanol under the tested neutral conditions. Catalytic tests showed that together with CHT route, sorbitol was also produced by means of sugar disproportionation, with the simultaneous production of gluconolactone, which takes place easily in the presence of the Raney Ni catalysts. Studies on the influence of the catalyst loading on the production of sorbitol revealed the existence of a catalyst activation step, attributed to the generation of metal-hydride species, the truly catalytic sites for hydrogenation. However, a catalyst deactivation phenomenon was detected as well. In this case, TGA and FTIR analysis allowed ascribing the adsorption of organic species, coming from the oxidation of glucose (such as gluconic acid), onto the catalyst surface, to the most plausible cause for the deactivation of the catalyst. Catalyst recycling tests evidenced the deactivation occurred mainly during the first use of the Raney Ni catalyst.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Marques C, Tarek R, Sara M, Brar SK (2016) Sorbitol production from biomass and its global market. Platf Chem Biorefin 2016:217–227

    Article  Google Scholar 

  2. 2.

    Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2:1138–1144. https://doi.org/10.1002/cssc.200900137

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Robinson JM, Wadle AM, Reno MD et al (2015) Solvent- and microwave-assisted dehydrations of polyols to anhydro and dianhydro polyols. Energy Fuels 29:6529–6535. https://doi.org/10.1021/acs.energyfuels.5b02167

    Article  CAS  Google Scholar 

  4. 4.

    Zada B, Chen MY, Chen CB et al (2017) Recent advances in catalytic production of sugar alcohols and their applications. Sci China Chem 60:853–869

    Article  CAS  Google Scholar 

  5. 5.

    Zhang J, Li JB, Wu SB, Liu Y (2013) Advances in the catalytic production and utilization of sorbitol. Ind Eng Chem Res 52:11799–11815. https://doi.org/10.1021/ie4011854

    Article  CAS  Google Scholar 

  6. 6.

    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/b922014c

    Article  CAS  Google Scholar 

  7. 7.

    Schiweck H, Bär A, Vogel R et al (2012) Sugar alcohols. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken

    Google Scholar 

  8. 8.

    Hoffer BW, Crezee E, Devred F et al (2003) The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol. Appl Catal A 253:437–452. https://doi.org/10.1016/S0926-860X(03)00553-2

    Article  CAS  Google Scholar 

  9. 9.

    Gericke D, Ott D, Matveeva VG et al (2015) Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of glucose hydrogenation. RSC Adv 5:15898–15908. https://doi.org/10.1039/c4ra14559c

    Article  CAS  Google Scholar 

  10. 10.

    Gilkey MJ, Xu B (2016) Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal 6:1420–1436. https://doi.org/10.1021/acscatal.5b02171

    Article  CAS  Google Scholar 

  11. 11.

    Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  12. 12.

    Bulushev DA, Ross JRH (2018) Towards sustainable production of formic acid. ChemSusChem 11:821–836. https://doi.org/10.1002/cssc.201702075

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Alonso F, Riente P, Yus M (2011) Nickel nanoparticles in hydrogen transfer reactions. Acc Chem Res 44:379–391. https://doi.org/10.1021/ar1001582

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Wang X, Rinaldi R (2012) Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions. Energy Environ Sci 5:8244–8260. https://doi.org/10.1039/c2ee21855k

    Article  CAS  Google Scholar 

  15. 15.

    Kennema M, De Castro IBD, Meemken F, Rinaldi R (2017) Liquid-phase H-transfer from 2-propanol to phenol on Raney Ni: surface processes and inhibition. ACS Catal. https://doi.org/10.1021/acscatal.6b03201

    Article  Google Scholar 

  16. 16.

    van Hengstum AJ, Kieboom APG, van Bekkum H (1984) Catalytic transfer hydrogenation of glucose–fructose syrups in alkaline solution. Starch Stärke 36:317–320. https://doi.org/10.1002/star.19840360908

    Article  Google Scholar 

  17. 17.

    Scholz D, Aellig C, Mondelli C, Pérez-Ramírez J (2015) Continuous transfer hydrogenation of sugars to alditols with bioderived donors over Cu–Ni–Al catalysts. ChemCatChem 7:1551–1558. https://doi.org/10.1002/cctc.201403005

    Article  CAS  Google Scholar 

  18. 18.

    Kieboom APJ, van Bekkum H (1984) Aspects of the chemical conversion of glucose. Recl. des Trav. Chim des Pays Bas 103(1):1–12

    Article  CAS  Google Scholar 

  19. 19.

    Kobayashi H, Matsuhashi H, Komanoya T et al (2011) Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chem Commun 47:2366–2368. https://doi.org/10.1039/c0cc04311g

    Article  CAS  Google Scholar 

  20. 20.

    Komanoya T, Kobayashi H, Hara K et al (2013) Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts. J Energy Chem 22:290–295. https://doi.org/10.1016/S2095-4956(13)60035-2

    Article  Google Scholar 

  21. 21.

    Kusserow B, Schimpf S, Claus P (2003) Hydrogenation of glucose to sorbitol over nickel and ruthenium catalysts. Adv Synth Catal 345:289–299. https://doi.org/10.1002/adsc.200390024

    Article  CAS  Google Scholar 

  22. 22.

    Salmi T, Kuusisto J, Warna J, Mikkola J-P (2009) Detailed kinetic analysis reveals the true reaction path: catalytic hydrogenation, hydrolysis and isomerization of lactose. In: Catalysis of organic reactions. CRC, Boca Raton, pp 103–115

    Google Scholar 

  23. 23.

    Rajagopal S, Vancheesan S, Rajaram J, Kuriacose JC (1983) The mechanism of disproportionation of D-glucose catalysed by hydridochlorocarbonyltris(triphenyl-phosphine)ruthenium(II) in tetrahydrofurfuryl alcohol. J Mol Catal 22:137–144. https://doi.org/10.1016/0304-5102(83)83019-3

    Article  CAS  Google Scholar 

  24. 24.

    Rajagopal S, Vancheesan S, Rajaram J, Kuriacose JC (1992) RuCl2(PPh3)3-catalyzed transfer hydrogenation of D-glucose. J Mol Catal 75:199–208

    Article  CAS  Google Scholar 

  25. 25.

    Castellanos-Blanco N, Arévalo A, García JJ (2016) Nickel-catalyzed transfer hydrogenation of ketones using ethanol as a solvent and a hydrogen donor. Dalton Trans 45:13604–13614. https://doi.org/10.1039/c6dt02725c

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Chaloner PA, Esteruelas MA, Joó F, Oro LA (1994) Homogeneous hydrogenation. Springer, Netherlands

    Google Scholar 

  27. 27.

    Deng W, Liu M, Zhang Q et al (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46:2668–2670. https://doi.org/10.1039/b925723c

    Article  CAS  Google Scholar 

  28. 28.

    Samec JSM, Bäckvall JE, Andersson PG, Brandt P (2006) Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chem Soc Rev 35:237–248. https://doi.org/10.1039/b515269k

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Singh UK, Krska SW, Sun Y (2006) Deactivation of heterogeneous hydrogenation catalysts by alcoholic solvents. Org Process Res Dev 10:1153–1156. https://doi.org/10.1021/op0601520

    Article  CAS  Google Scholar 

  30. 30.

    Alonso F, Riente P, Sirvent JA, Yus M (2010) Nickel nanoparticles in hydrogen-transfer reductions: characterisation and nature of the catalyst. Appl Catal A 378:42–51. https://doi.org/10.1016/j.apcata.2010.01.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Spanish Ministry of Economy and Competitiveness (project CTQ2014-52907-R), and from the Regional Government of Madrid (project BIOTRES-CM P2018/EMT-4344) is gratefully acknowledged. B. García thanks the funding of a contract from the Young Employment Initiative program (project PEJD-2016/AMB-2321). Authors thank Johnson Matthey for kindly providing Raney Ni samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Moreno.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García, B., Moreno, J., Iglesias, J. et al. Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs Catalytic Hydrogen Transfer. Top Catal 62, 570–578 (2019). https://doi.org/10.1007/s11244-019-01156-3

Download citation

Keywords

  • Glucose
  • Sorbitol
  • Catalytic hydrogen transfer
  • Disproportionation
  • Raney nickel