Skip to main content
Log in

Evaluation of HZSM-5 Zeolite as Cracking Catalyst for Upgrading the Vapours Generated in the Pyrolysis of an Epoxy-Carbon Fibre Waste Composite

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this paper the performance of HZSM-5 zeolite in the thermo-catalytic treatment of the vapours and gases evolved from the pyrolysis of a carbon fibre-epoxy waste composite has been evaluated. The experiments have been carried out in a laboratory-scale installation consisting in a 3.5 L tank reactor, where pyrolysis of the waste happens, and a 0.5 m long tubular reactor placed in series, where the thermo-catalytic treatment of the gases and vapours coming from the tank reactor takes place. The catalytic activity of the zeolite has been studied at 700 and 900 °C, in two different placement configurations and in presence and absence of carrier gas. HZSM-5 zeolite is capable of cracking the organic compounds of the liquid phase, generating a liquid fraction with high proportion of water. In the presence of carrier gas, this catalyst also increases the proportion of H2 in gases. In general terms the effect of the catalyst is not very noteworthy, probably due to the large molecules that are involved in the process and due to problems of poisoning and deactivation with coke, sulphur and nitrogen compounds. In any case, it has been demonstrated that it is possible to produce a gas fraction with more than 50 vol.% of H2 in all experiments in which the treatment of gases and vapours is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Callister WD, Rethwisch DG (2011) Materials science and engineering. Wiley, New Jersey

    Google Scholar 

  2. Sloan J (2017) Compos World 3 (1): 24–25

    Google Scholar 

  3. Lefeuvre A, Garnier S, Jacquemin L, Pillain B, Sonnemann G (2017) Resour Conserv Recycl 125:264–272

    Article  Google Scholar 

  4. Jensen JP, Skelton K (2018) Renew Sustain Energy Rev 97:165–176

    Article  Google Scholar 

  5. Yang Y, Boom R, Irion B, van Heerden DJ, Kuiper P, de Wit H (2012) Chem Eng Process 51:53–68

    Article  CAS  Google Scholar 

  6. Vo Dong PA, Azzaro-Pantel C, Cadene AL (2018) Resour Conserv Recycl 133:63–75

    Article  Google Scholar 

  7. Naqvi SR, Prabhakara HM, Bramer EA, Dierkes W, Akkerman R, Brem G (2018) Resour Conserv Recycl 136:118–129

    Article  Google Scholar 

  8. Yildirir E, Miskolczi N, Onwudili JA, Németh KE, Williams PT, Sója J (2015) Compos B 78:393–400

    Article  CAS  Google Scholar 

  9. Li M, Li S, Liu J, Wen X, Tang T (2016) Compos Sci Technol 125:9–16

    Article  CAS  Google Scholar 

  10. Yan H, Lu CX, Jing DQ, Chang CB, Liu NX, Hou XL (2016) New Carbon Mater 31(1):46–54

    Article  Google Scholar 

  11. La Rosa AD, Banatao DR, Pastine SJ, Latteri A, Cicala G (2016) Compos B 104:17–25

    Article  CAS  Google Scholar 

  12. Nahil MA, Williams PT (2011) J Anal Appl Pyrolysis 91:67–75

    Article  CAS  Google Scholar 

  13. López FA, Rodríguez O, Alguacil FJ, García-Díaz I, Centeno TA, García-Fierro JL, González C (2013) J Anal Appl Pyrolysis 104:675–683

    Article  CAS  Google Scholar 

  14. Onwudili JA, Miskolczi N, Nagy T, Lipóczi G (2016) Compos B 91:154–161

    Article  CAS  Google Scholar 

  15. Meng F, McKechnie J, Turner T, Wong KH, Pickering SJ (2017) Environ Sci Technol 51:12727–12736

    Article  CAS  PubMed  Google Scholar 

  16. Meng F, McKechnie J, Turner TA, Pickering SJ (2017) Compos A 100:206–214

    Article  CAS  Google Scholar 

  17. Meng F, McKechnie J, Pickering SJ (2018) Compos A 109:207–220

    Article  Google Scholar 

  18. Black S (2017) Compos World 3 (8): 46–55

    Google Scholar 

  19. Holmes M (2018) Reinf Plast 61(5):279–283

    Article  Google Scholar 

  20. Tuner TA, Pickering SJ, Warrior NA (2011) Compos B 42:517–525

    Article  CAS  Google Scholar 

  21. Job S, Leeke G, Tarisai P, Oliveux G, Pickering S, Shuaib NA (2016) Composites recycling: where are we now? Composites UK. Accesed 10 December 2018. https://compositesuk.co.uk/system/files/documents/Recycling%20Report%202016.pdf

  22. Khalil YF (2018) Waste Manag 76:767–778

    Article  CAS  PubMed  Google Scholar 

  23. Candelieri T, Cornacchia G, Galvagno S, Portofino S, Lucchesi A, Coriano OA (2003) Method and apparatus for recovering carbon and/or glass fibers from a composite material. Patent WO 03/089212A1

  24. Davidson J, Price R (2011) Recycling Carbon Fibre. Patent WO 2009/090264

  25. Rademacker T (2011) CFRP Recycling—closed loop for carbon fibers. TOHO TENAX Symposium—recycling of CFRP materials

  26. Cunliffe AM, Jones N, Williams PT (2003) J Anal Appl Pyrolysis 70:315–338

    Article  CAS  Google Scholar 

  27. Giorgini L, Benelli T, Mazzocchetti L, Leonardi C, Zattini G, Minak G, Dolcini E, Cavazzoni M, Monanari I, Tosi C (2015) Polym Compos 36(6):1084–1095

    Article  CAS  Google Scholar 

  28. Yang J, Liu J, Liu W, Wang J, Tang T (2015) J Anal Appl Pyrolysis 112:253–261

    Article  CAS  Google Scholar 

  29. Lopez-Urionabarrenechea A, de Marco I, Caballero BM, Gastelu N, Hernández A, Adrados A, Solar J (2016) Method for treating vapours generated during the process for recovering carbon fibres from composites by pyrolysis. Patent PCT/ES2016/070107

  30. Gastelu N, Lopez-Urionabarrenechea A, Solar J, Acha E, Caballero BM, López FA, de Marco I (2018) Catal 8(11):523

    Article  CAS  Google Scholar 

  31. Serrano DP, Aguado J, Rodríguez JM, Peral A (2007) J Anal Appl Pyrolysis 79:456–464

    Article  CAS  Google Scholar 

  32. Marcilla A, Beltrán MI, Navarro R (2009) Appl Catal B 86:78–86

    Article  CAS  Google Scholar 

  33. Lopez-Urionabarrenechea A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Appl Catal B 104:211–219

    Article  CAS  Google Scholar 

  34. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA (2011) Bioresour Technol 102:8261–8267

    Article  CAS  Google Scholar 

  35. Murata K, Liu Y, Inaba M, Takahara I (2012) J Anal Appl Pyrolysis 94:75–82

    Article  CAS  Google Scholar 

  36. Adrados A, de Marco I, Lopez-Urionabarrenechea A, Solar J, Caballero B (2015) Biomass Bioenergy 74:172–179

    Article  CAS  Google Scholar 

  37. Holm MS, Taarning E, Egebald K, Christensen CH (2011) Catal Today 168:3–16

    Article  CAS  Google Scholar 

  38. Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S (2017) J Anal Appl Pyrolysis 126:14–21

    Article  CAS  Google Scholar 

  39. TORAYCA T800S Technical data sheet. https://www.toraycma.com/file_viewer.php?id=4464 Accesed 10 December 2018

  40. Adrados A, Lopez-Urionabarrenechea A, Acha E, Solar J, Caballero BM, de Marco I (2017) Energy Convers Manag 148:352–359

    Article  CAS  Google Scholar 

  41. Yip HLH, Pickering SJ, Rudd CD (2002) Plat Rubber Compos 31(6):278–282

    Article  CAS  Google Scholar 

  42. Jiang G, Pickering SJ, Walker GS, Wong KH, Rudd CD (2007) Appl Surf Sci 254:2588–2593

    Article  CAS  Google Scholar 

  43. Meyer LO, Schulte K, Grove-Nielsen E (2009) J Compos Mater 43(9):1121–1132

    Article  CAS  Google Scholar 

  44. Mazzocchetti L, Benelli T, D’Angelo E, Leonardi C, Zattini G, Giorgini L (2018) Compos A 112:504–514

    Article  CAS  Google Scholar 

  45. Lopez-Urionabarrenechea A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2010) Waste Manag 30:620–627

    Article  CAS  Google Scholar 

  46. Adrados A, de Marco I, Lopez-Urionabarrenechea A, Caballero BM, Laresgoiti MF (2013) Waste Manag 33:52–59

    Article  CAS  PubMed  Google Scholar 

  47. Solar J, Hernandez A, Lopez-Urionabarrenechea A, de Marco I, Adrados A, Caballero BM, Gastelu N (2017) Eur J Wood Prod 75:485–497

    Article  CAS  Google Scholar 

  48. Shi J, Zhang Y, Fan Z, Chen M, Zhang Z, Shangguan W (2018) Ind Eng Chem Res 57(41):13703–13712

    Article  CAS  Google Scholar 

  49. Dahlin S, Lantto C, Englund J, Westerberg B, Regali F, Skoglundh M, Pettersson LJ (2019) Catal Today 320:72–83

    Article  CAS  Google Scholar 

  50. Pimenta S, Pinho ST (2011) Waste Manag 31:378–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Ministry of Economy and Competitiveness of the Spanish Government for the funding obtained for this work (Ref. CTM2013-48887-C2-1-R), as well as the Basque Government for the Researcher Training Grant awarded to N. Gastelu in the call of 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lopez-Urionabarrenechea.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastelu, N., Lopez-Urionabarrenechea, A., Acha, E. et al. Evaluation of HZSM-5 Zeolite as Cracking Catalyst for Upgrading the Vapours Generated in the Pyrolysis of an Epoxy-Carbon Fibre Waste Composite. Top Catal 62, 479–490 (2019). https://doi.org/10.1007/s11244-019-01152-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01152-7

Keywords

Navigation