Topics in Catalysis

, Volume 62, Issue 1–4, pp 198–205 | Cite as

Impact of the Support on the Catalytic Performance, Inhibition Effects and SO2 Poisoning Resistance of Pt-Based Formaldehyde Oxidation Catalysts

  • Thomas Schedlbauer
  • Patrick Lott
  • Maria Casapu
  • Heike Störmer
  • Olaf DeutschmannEmail author
  • Jan-Dierk GrunwaldtEmail author
Original Paper


Formaldehyde emissions in addition to the methane-slip have recently been addressed for natural gas fueled combustion engines and thus require an aftertreatment catalyst system. In this work, two Pt-based catalysts supported on Al2O3 and TiO2–SiO2 were investigated by considering their activity, inhibition and stability towards SO2-poisoning. The catalysts were analyzed by X-ray diffraction, electron microscopy, BET surface area, ex situ and operando X-ray absorption spectroscopy, which revealed differences in the oxidation state of Pt depending on the support material and that slightly reduced Pt sites seem to be the active species for this reaction. Systematic activity tests showed that NOx presence leads to a significant inhibition, possibly due to oxidation of the active species, whereas CO addition promotes formaldehyde oxidation above the onset temperature of CO oxidation. These results were supported by spatially resolved concentration profiles along the channel of a catalyst coated monolith. Addition of small amounts of SO2 to the gas mixture resulted in a complete loss of the low-temperature activity, slightly more pronounced for the TiO2–SiO2 supported catalyst.


Formaldehyde oxidation Inhibition effects Mechanism SO2 poisoning Spatially resolved concentration profiles Emission control 



We thank the Research Association for Combustion Engines e.V. (FVV) for financial support, and the Karlsruher synchrotron facility (CAT-ACT beamline) and DESY (P65 beamline, PETRA III) for providing beam time. Dr. A. Zimina (KIT), Dr. T. Prüßmann (KIT) and Edmund Welter (PETRA III) are gratefully acknowledged for their help and technical support during the XAS experiments.

Supplementary material

11244_2018_1122_MOESM1_ESM.pdf (737 kb)
Supplementary material 1. Further details on XRD characterization data, mass spectrometer data during operando XAS and activity measurements are provided in the supporting information. (PDF 737 KB)


  1. 1.
    Commission Regulation (EU) (2011) No 605/2014 of 5 June 2014. Off J Eur Union 57:36–49Google Scholar
  2. 2.
    Maillet T, Solleau C, Barbier J, Duprez D (1997) Appl Catal B 14:85–95CrossRefGoogle Scholar
  3. 3.
    Fujimoto KR, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431–442CrossRefGoogle Scholar
  4. 4.
    Yamamoto H (1998) Catal Today 45:147–151CrossRefGoogle Scholar
  5. 5.
    Chen Y, He J, Tian H, Wang D, Yang Q (2014) J Colloid Interface Sci 428:1–7CrossRefGoogle Scholar
  6. 6.
    Ma L, Wang D, Li J, Bai B, Fu L, Li Y (2014) Appl. Catal. B, 148–149:36–43Google Scholar
  7. 7.
    de la Peña O’Shea VA, Álvarez-Galván MC, Fierro JLG, Arias PL (2005) Appl Catal B 57: 191–199CrossRefGoogle Scholar
  8. 8.
    Sodhi D, Abraham MA, Summers JC (1990) J Air Waste Manag Assoc 40:352–356CrossRefGoogle Scholar
  9. 9.
    Schedlbauer T, Casapu M, Grunwaldt JD, Deutschmann O (2018) SAE Tech. Paper, 2018-01-5021Google Scholar
  10. 10.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  11. 11.
    Livio D, Diehm C, Donazzi A, Beretta A, Deutschmann O (2013) Appl Catal A 467:530–541CrossRefGoogle Scholar
  12. 12.
    Al-Harbi M, Hayes R, Votsmeier M, Epling WS (2012) Can J Chem Eng 90:1527–1538CrossRefGoogle Scholar
  13. 13.
    Piacentini M, Maciejewski M, Bürgi T, Baiker A (2004) Top Catal 30/31:71–80CrossRefGoogle Scholar
  14. 14.
    Rodriguez JA, Jirsak T, Liu G, Hrbek J, Dvorak J, Maiti A (2001) J Am Chem Soc 123:9597–9605CrossRefGoogle Scholar
  15. 15.
    Nie L, Wang J, Yu J (2017) RSC Adv 7:21389–21397CrossRefGoogle Scholar
  16. 16.
    Zhang C, He H, Tanaka K-i (2006) Appl Catal B 65:37–43CrossRefGoogle Scholar
  17. 17.
    Gänzler AM, Casapu M, Boubnov A, Müller O, Conrad S, Lichtenberg H, Frahm R, Grunwaldt J-D (2015) J Catal 328:216–224CrossRefGoogle Scholar
  18. 18.
    Mowery DL, McCormick RL (2001) Appl Catal B 34:287–297CrossRefGoogle Scholar
  19. 19.
    Li J, Kumar A, Chen X, Currier N, Yezerets A, SAE Tech. Paper, 2013-01-0514 (2013)Google Scholar
  20. 20.
    Streber R, Papp C, Lorenz MPA, Höfert O, Darlatt E, Bayer A, Denecke R, Steinrück HP (2010) Chem Phys Lett 494:188–192CrossRefGoogle Scholar
  21. 21.
    Sharma HN, Suib SL, Mhadeshwar AB (2013) ACS Symp Ser 1132:117–155CrossRefGoogle Scholar
  22. 22.
    Kröcher O, Widmer M, Elsener M, Rothe D (2009) Ind Eng Chem Res 48:9847–9857CrossRefGoogle Scholar
  23. 23.
    Dawody J, Skoglundh M, Olsson L, Fridell E (2005) J Catal 234:206–218CrossRefGoogle Scholar
  24. 24.
    Hansen TW, Delariva AT, Challa SR, Datye A (2012) Acc Chem Res 46:1720–1730CrossRefGoogle Scholar
  25. 25.
    Hirata H, Hachisuka I, Ikeda Y, Tsuji S, Matsumoto SI (2001) Top Catal 16–17:145CrossRefGoogle Scholar
  26. 26.
    Matsumoto Si, Ikeda Y, Suzuki H, Ogai M, Miyoshi N (2000) Appl Catal B 25:115–124CrossRefGoogle Scholar
  27. 27.
    Gremminger A, Torkashvand B, Valchera S, Casapu M, Grunwaldt J-D, Deutschmann O (2017) SAE Tech. Paper, 2017-01-1019Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations