Tin Dioxide as an Alternative to Platinum Promoter in Palladium-Catalyzed Wet Lean Methane Combustion

Abstract

Tin dioxide was assessed as a substitute for part of platinum-group metals in a catalytic converter, and the activity of various Pd and PdPt catalysts was compared on conventional alumina support and SnO2 in wet lean methane combustion. Remarkably, Pd-only catalysts supported on SnO2 revealed higher activity compared with PdPt/Al2O3. The catalysts benefit from the strong metal-support interactions and high oxygen mobility in SnO2 with dual Sn4+/Sn2+ valency. SnO2 can thus be considered a potential replacement of Pt in a catalytic converter for a natural gas vehicle under lean burn conditions. This potentially decreases the price of the converter and eliminates the need for scarce and expensive Pt.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Gelin P, Primet M (2002) Appl Catal B 39:1–37

    Article  CAS  Google Scholar 

  2. 2.

    Persson K, Pfefferle LD, Schwartz W, Ersson A, Jaras SG (2007) Appl Catal B 74:242–250

    Article  CAS  Google Scholar 

  3. 3.

    Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catal Rev 44:593–649

    Article  CAS  Google Scholar 

  4. 4.

    Gholami R, Alyani M, Smith KJ (2015) Catalysts 5:561–594

    Article  CAS  Google Scholar 

  5. 5.

    Ribeiro FH, Chow M, Dallabetta RA (1994) J Catal 146:537–544

    Article  CAS  Google Scholar 

  6. 6.

    Burch R, Urbano FJ, Loader PK (1995) Appl Catal A 123:173–184

    Article  CAS  Google Scholar 

  7. 7.

    Nassiri H, Lee K-E, Hu Y, Hayes RE, Scott RWJ, Semagina N (2017) J Catal 352:649–656

    Article  CAS  Google Scholar 

  8. 8.

    Monai M, Montini T, Chen C, Fonda E, Gorte RJ, Fornasiero P (2015) ChemCatChem 7:2038–2046

    Article  CAS  Google Scholar 

  9. 9.

    Nassiri H, Hayes RE, Semagina N (2018) Chem Eng Sci 186:44–51

    Article  CAS  Google Scholar 

  10. 10.

    Willis JJ, Goodman ED, Wu L, Riscoe AR, Martins P, Tassone CJ, Cargnello M (2017) J Am Chem Soc 139:11989–11997

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Kikuchi R, Maeda S, Sasaki K, Wennerström S, Eguchi K (2002) Appl Catal A 232:23–28

    Article  CAS  Google Scholar 

  12. 12.

    Widjaja H, Sekizawa K, Eguchi K (1999) Bull Chem Soc Jpn 72:313–320

    Article  CAS  Google Scholar 

  13. 13.

    Schwartz WR, Pfefferle LD (2012) J Phys Chem C 116:8571–8578

    Article  CAS  Google Scholar 

  14. 14.

    Schwartz WR, Ciuparu S, Pfefferle LD (2012) J Phys Chem C 116:8587–8593

    Article  CAS  Google Scholar 

  15. 15.

    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttal RL (1982) J Phys Chem Ref Data 11/2:1–407

    Google Scholar 

  16. 16.

    Takeguchi T, Takeoh O, Aoyama S, Ueda J, Kikuchi R, Eguchi K (2003) Appl Catal A 252:205–214

    Article  CAS  Google Scholar 

  17. 17.

    Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Appl Catal A 200:211–217

    Article  CAS  Google Scholar 

  18. 18.

    Zhao Z, Wang B, Ma J, Zhan W, Wang L, Guo Y, Guo Y, Lu G (2017) Chinese J Catal 38:1322–1329

    Article  CAS  Google Scholar 

  19. 19.

    Abbasi R, Wu L, Wanke SE, Hayes RE (2012) Chem Eng Res Des 90:1930–1942

    Article  CAS  Google Scholar 

  20. 20.

    Shen J, Hayes RE, Wu X, Semagina N (2015) ACS Catal 5:2916–2920

    Article  CAS  Google Scholar 

  21. 21.

    Ma N, Suematsu K, Yuasa M, Shimanoe K (2015) ACS Appl Mater Interfaces 7:15618–15625

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Park PW, Kung HH, Kim D-W, Kung MC (1999) J Catal 184:440–454

    Article  CAS  Google Scholar 

  23. 23.

    Chai S, Bai X, Li J, Liu C, Ding T, Tian Y, Liu C, Xian H, Mi W, Li X (2017) Appl Surf Sci 402:12–20

    Article  CAS  Google Scholar 

  24. 24.

    Wang X, Xie Y-C (2001) Catal Lett 75:73–80

    Article  CAS  Google Scholar 

  25. 25.

    Wang X, Xie Y-C (2001) New J Chem 25:1621–1626

    Article  CAS  Google Scholar 

  26. 26.

    Yamaura H, Hirao S, Yamaguchi S, Yahiro H (2016) Sens Mater 28:1203–1210

    CAS  Google Scholar 

  27. 27.

    Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Surf Sci 86:335–344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from NSERC (Strategic Grants STPGP 430108-12 and STPGP 478979-15), CFI (Leaders’ Opportunity Fund, Grant 24766) is appreciated. We thank Dr. John Duke for NAA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natalia Semagina.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nassiri, H., Hayes, R.E. & Semagina, N. Tin Dioxide as an Alternative to Platinum Promoter in Palladium-Catalyzed Wet Lean Methane Combustion. Top Catal 62, 386–390 (2019). https://doi.org/10.1007/s11244-018-1084-1

Download citation

Keywords

  • Methane combustion
  • Water resistance
  • Deactivation
  • Tin dioxide
  • Palladium catalyst
  • Catalytic combustion