The Development of a N2O Abatement Catalyst: from Laboratory Scale to Plant Testing

Abstract

Nitrous oxide is a powerful greenhouse gas with a global warming potential stated to be between 265 and 310. The production of nitric acid is the largest source of nitrous oxide from the chemical process industries, and it equates to circa 50% of the total greenhouse gas emissions from nitric acid production. This paper describes the successful development of a catalyst for the decomposition of nitrous oxide in the ammonia burner, from laboratory, pilot and plant-scale testing. This catalyst is capable of reducing nitrous oxide emissions by more than 90%, with no significant modifications to plant operation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Gubler R, He X, Suresh B, Yamaguchi Y (2014) Nitric acid. Chemical economics handbook. IHS Chemical, London

    Google Scholar 

  2. 2.

    Thiemann M, Scheibler E, Wiegand KW (2003) Ullmann’s Encyclopedia of Industrial Chemistry, nitric acid, nitrous acid, and nitrogen oxides, 6th edn, vol 23. Wiley-VCH, Hoboken, pp. 1–49

    Google Scholar 

  3. 3.

    Hatscher ST et al (2008) Ammonia oxidation. Handbook of heterogeneous catalysis, vol 5. Wiley, New York, pp 2575–2592.

    Google Scholar 

  4. 4.

    http://fertilizerseurope.com/fileadmin/user_upload/publications/tecnical_publications/BATs/Booklet_2_final.pdf

  5. 5.

    http://www.epa.gov/globalwarming/emissions/national/gwp.html

  6. 6.

    Perez-Ramirez J, Kapteijn F, Schøffel K, Moulijn JA (2003) Formation and control of N2O in nitric acid production: where do we stand today? Appl Catal B 44:117–151

    CAS  Article  Google Scholar 

  7. 7.

    Kapteijn F. Rodriguez-mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B 9:25–64

    CAS  Article  Google Scholar 

  8. 8.

    http://www.nobel.matthey.com.product

  9. 9.

    Wolf F, Gill M (2015) Development of an advanced cobalt catalyst for nitric acid production. In: 2015 ANNA conference

  10. 10.

    Fareid E, Kongshaug G, Hjornevik L, Nirsen Ø. (1993) EP 0359286

  11. 11.

    https://www.thyssenkrupp-industrial-solutions.com/media/products_services/fertilizer_plants/nitrate_plants/brochure_envinox_scr.pdf

  12. 12.

    Hallan T, Nirisen Ø, Schøffel K, Waller D (2001) Abatement of nitrous oxide from nitric acid production, NOXCONF 2001. In: International conference on industrial atmospheric pollution, NOx and N2O emission control: panel of available techniques

  13. 13.

    Cimina A, Stone FS (2002) Oxide solid solutions as catalysts. Adv Catal 47:141–306

    Google Scholar 

  14. 14.

    Hinshelwood CN, Pritchard CR (1925) J Chem Soc 127:327

    CAS  Article  Google Scholar 

  15. 15.

    Schwab G, Staeger RZ (1934) Phys Chem B 25:418

    Google Scholar 

  16. 16.

    Wagner C, Hauffe K (1938) Z Elektrochem 44:172

    CAS  Google Scholar 

  17. 17.

    Swamy CS, Chrisopher J (1992) Catal Rev 34:409

    CAS  Article  Google Scholar 

  18. 18.

    Armor JN, Braymer TA, Farris TS, Li Y, Petrocelli FP, Weist EL, Kannan S, Swamy CS (1996) Appl Catal B 7:397

    CAS  Article  Google Scholar 

  19. 19.

    Cimino A, Stone FS (1997) Handbook of heterogeneous catalysis, vol 2. Wiley, Weinheim, p 845

    Google Scholar 

  20. 20.

    Kawada H, Sakai N, Yokakawa H, Dokiya M (1992) Solid State Ion 53–56:418

    Article  Google Scholar 

  21. 21.

    Colon G, Botta SG, Litter MI (2001) Langmuir 17:202

    Article  Google Scholar 

  22. 22.

    Rath PP, Parhi PK, Panda SR, Priyadarshini B, Sahoo TR (2017) In: IOP conference series materials science and engineering, vol 225

  23. 23.

    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design and applications, Chap. 4. Elsevier, Amsterdam

    Google Scholar 

  24. 24.

    Waller D, Sirman JD, Kilner JA (1997) In: Proceedings of the fifth international symposium on solid oxide fuel cells (SOFC V), pp 1140–1149

  25. 25.

    Sirman JD, Waller D, Kilner JA (1999) In: Proceedings of the fifth international symposium on solid oxide fuel cells (SOFC V), pp 1159–1168

  26. 26.

    Chen M. Hallstedt B, Grundy AN, Gaukler L (2003) J Am Ceram Soc 86:1567

    CAS  Article  Google Scholar 

  27. 27.

    Øygarden A, Perez-Ramirez J, Waller D, Schøffel K (2004) WO 2004/110622 A1

Download references

Acknowledgements

The core team for the project included David Waller, Øystein Nirisen, David M. Brackenbury, Arne Øygarden, Camilla Otterlei, Toril Schelderup, Per Ivar Karlsen, Magne Slåen and Klaus Schøffel.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Waller.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nirisen, Ø., Waller, D. & Brackenbury, D.M. The Development of a N2O Abatement Catalyst: from Laboratory Scale to Plant Testing. Top Catal 62, 1113–1125 (2019). https://doi.org/10.1007/s11244-018-1076-1

Download citation

Keywords

  • N2O
  • Nitric acid
  • Emissions
  • Catalyst