Advertisement

Topics in Catalysis

, Volume 61, Issue 20, pp 2152–2160 | Cite as

Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte-Consuming Alkaline Oxygen Evolution Reaction

  • Kelsey A. Stoerzinger
  • Marco Favaro
  • Philip N. Ross
  • Zahid Hussain
  • Zhi Liu
  • Junko Yano
  • Ethan J. Crumlin
Original Article

Abstract

Achieving a molecular-level understanding of interfacial (photo)electrochemical processes is essential in order to tailor novel and highly-performing catalytic systems. The corresponding recent development of in situ and operando tools has posed new challenges on experimental architectures. In this study, we use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to probe the solid/liquid electrified interface of a polycrystalline Pt sample in contact with an alkaline electrolyte during hydrogen and oxygen evolution reactions. Using the “dip-and-pull” technique to probe the interface through a thin liquid layer generated on the sample surface, we observe that the electrolyte meniscus becomes unstable under sustained driving of an electrolyte-consuming reaction (such as water oxidation). The addition of an electrochemically inert supporting electrolyte mitigates this issue, maintaining a stable meniscus layer for prolonged reaction times. In contrast, for processes in which the electrolyte is replenished in the reaction pathway (i.e. water reduction in alkaline conditions), we find that the solid/liquid interface remains stable without addition of a secondary supporting electrolyte. The approach described in this work allows the extension of operando AP-XPS capabilities using the “dip-and-pull” method to a broader class of reactions consuming ionic species during complex interfacial faradaic processes.

Keywords

Ambient pressure XPS Electrocatalysis Oxygen evolution reaction Hydrogen evolution reaction Solid/liquid interface stability 

Notes

Acknowledgements

This work was partially supported through the Office of Science, Office of Basic Energy Science (BES), of the U.S. Department of Energy (DOE) under award no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. K.A.S. gratefully acknowledges support from the Linus Pauling Distinguished Post-Doctoral Fellowship Pacific Northwest National Laboratory (PNNL, Laboratory Directed Research and Development Program 69319). PNNL is a multiprogram national laboratory operated for DOE by Battelle.

Supplementary material

11244_2018_1063_MOESM1_ESM.pdf (485 kb)
Supplementary material 1 (PDF 485 KB)

References

  1. 1.
    Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv Energy Mat 7(1):1601275CrossRefGoogle Scholar
  2. 2.
    Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262(Supplement C):170–180CrossRefGoogle Scholar
  3. 3.
    Karlsson RKB, Cornell A (2016) Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem Rev 116(5):2982–3028CrossRefGoogle Scholar
  4. 4.
    Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512CrossRefGoogle Scholar
  5. 5.
    Clancy M, Bettles CJ, Stuart A, Birbilis N (2013) The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals: a review. Hydrometallurgy 131–132(Supplement C):144–157CrossRefGoogle Scholar
  6. 6.
    Carpenter BK, Harvey JN, Orr-Ewing AJ (2016) The study of reactive intermediates in condensed phases. J Am Chem Soc 138(14):4695–4705CrossRefGoogle Scholar
  7. 7.
    Crumlin EJ, Liu Z, Bluhm H, Yang W, Guo J, Hussain Z (2015) X-ray spectroscopy of energy materials under in situ/operando conditions. J Electron Spectrosc Relat Phenom 200:264–273CrossRefGoogle Scholar
  8. 8.
    Kaya S, Ogasawara H, Näslund L-Å, Forsell J-O, Casalongue HS, Miller DJ, Nilsson A (2013) Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal Today 205:101–105CrossRefGoogle Scholar
  9. 9.
    Kornienko N, Resasco J, Becknell N, Jiang C-M, Liu Y-S, Nie K, Sun X, Guo J, Leone SR, Yang P (2015) Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc 137(23):7448–7455CrossRefGoogle Scholar
  10. 10.
    Ramaker DE, Korovina A, Croze V, Melke J, Roth C (2014) Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy. Phys Chem Chem Phys 16(27):13645–13653CrossRefGoogle Scholar
  11. 11.
    Schlögl R (2015) Heterogeneous catalysis. Angew Chem Int Ed 54(11):3465–3520CrossRefGoogle Scholar
  12. 12.
    Zandi O, Hamann TW (2016) Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat Chem 8(8):778–783CrossRefGoogle Scholar
  13. 13.
    Vesborg PCK, Jaramillo TF (2012) Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv 2(21):7933–7947CrossRefGoogle Scholar
  14. 14.
    Fan J, Qi K, Zhang L, Zhang H, Yu S, Cui X (2017) Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS App Mater Interfaces 9(21):18008–18014CrossRefGoogle Scholar
  15. 15.
    Kavian R, Choi S-I, Park J, Liu T, Peng H-C, Lu N, Wang J, Kim MJ, Xia Y, Lee SW (2016) Pt-Ni octahedral nanocrystals as a class of highly active electrocatalysts toward the hydrogen evolution reaction in an alkaline electrolyte. J Mat Chem A 4(32):12392–12397CrossRefGoogle Scholar
  16. 16.
    Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X (2017) Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Comm 8:14580CrossRefGoogle Scholar
  17. 17.
    Fadley CS (2010) X-ray photoelectron spectroscopy: progress and perspectives. J Electron Spectrosc Relat Phenom 178–179(Supplement C):2–32CrossRefGoogle Scholar
  18. 18.
    Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Shao-Horn Y (2015) Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res 48(11):2976–2983CrossRefGoogle Scholar
  19. 19.
    Axnanda S, Crumlin EJ, Mao B, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P, Hussain Z, Liu Z (2015) Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci Rep 5:9788CrossRefGoogle Scholar
  20. 20.
    Favaro M, Jeong B, Ross PN, Yano J, Hussain Z, Liu Z, Crumlin EJ (2016) Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat Commun 7:12695CrossRefGoogle Scholar
  21. 21.
    Lewerenz H-J, Lichterman MF, Richter MH, Crumlin EJ, Hu S, Axnanda S, Favaro M, Drisdell W, Hussain Z, Brunschwig BS, Liu Z, Nilsson A, Bell AT, Lewis NS, Friebel D (2016) Operando analyses of solar fuels light absorbers and catalysts. Electrochim Acta 211(Supplement C):711–719CrossRefGoogle Scholar
  22. 22.
    Favaro M, Valero-Vidal C, Eichhorn J, Toma FM, Ross PN, Yano J, Liu Z, Crumlin EJ (2017) Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J Mat Chem A 5(23):11634–11643CrossRefGoogle Scholar
  23. 23.
    Stoerzinger KA, Favaro M, Ross PN, Yang J, Liu Z, Hussain Z, Crumlin EJ (2017) Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J Phys Chem B 112(2):864–870CrossRefGoogle Scholar
  24. 24.
    Santos DMF, Sequeira CAC, Figueiredo JL (2013) Hydrogen production by alkaline water electrolysis. Quim Nova 36:1176–1193CrossRefGoogle Scholar
  25. 25.
    Esposito DV (2017) Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future. Joule.  https://doi.org/10.1016/j.joule.2017.07.003 CrossRefGoogle Scholar
  26. 26.
    Eilert A, Cavalca F, Roberts FS, Osterwalder J, Liu C, Favaro M, Crumlin EJ, Ogasawara H, Friebel D, Pettersson LGM, Nilsson A (2017) Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J Phys Chem Lett 8(1):285–290CrossRefGoogle Scholar
  27. 27.
    Lichterman MF, Hu S, Richter MH, Crumlin EJ, Axnanda S, Favaro M, Drisdell W, Hussain Z, Mayer T, Brunschwig BS, Lewis NS, Liu Z, Lewerenz H-J (2015) Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ Sci 8(8):2409–2416CrossRefGoogle Scholar
  28. 28.
    Haar L, Gallagher JS, Kell GS (eds) (1984) NBS/NRC steam tables. Hemisphere Publishing Corp., New YorkGoogle Scholar
  29. 29.
    Diéguez PM, Ursúa A, Sanchis P, Sopena C, Guelbenzu E, Gandía LM (2008) Thermal performance of a commercial alkaline water electrolyzer: experimental study and mathematical modeling. Int J Hydrog Energy 33(24):7338–7354CrossRefGoogle Scholar
  30. 30.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987CrossRefGoogle Scholar
  31. 31.
    Villullas HM, Lopez Teijelo M (1996) Meniscus shape and lateral wetting at the hanging meniscus rotating disc (HMRD) electrode. J Appl Electrochem 26(3):353–359CrossRefGoogle Scholar
  32. 32.
    Ali-Löytty H, Louie MW, Singh MR, Li L, Sanchez Casalongue HG, Ogasawara H, Crumlin EJ, Liu Z, Bell AT, Nilsson A, Friebel D (2016) Ambient-pressure XPS study of a Ni–Fe electrocatalyst for the oxygen evolution reaction. J Phys Chem C 120(4):2247–2253CrossRefGoogle Scholar
  33. 33.
    Favaro M, Abdi FF, Lamers M, Crumlin EJ, Liu Z, van de Krol R, Starr DE (2017) Light-induced surface reactions at the bismuth vanadate/potassium phosphate interface. J Phys Chem B.  https://doi.org/10.1021/acs.jpcb.7b06942 CrossRefPubMedGoogle Scholar
  34. 34.
    Dickinson EJF, Limon-Petersen JG, Rees NV, Compton RG (2009) How much supporting electrolyte is required to make a cyclic voltammetry experiment quantitatively “diffusional”? A theoretical and experimental investigation. J Phys Chem C 113(25):11157–11171CrossRefGoogle Scholar
  35. 35.
    Hwang I, Ahn E, Tak Y (2014) Effect of flouride ions on oxygen reduction and evolution reaction at α-MnO2 cathode. Int J Electrochem Sci 9(10):5454–5466Google Scholar
  36. 36.
    Soriaga MP, Chia VKF, White JH, Song D, Hubbard AT (1984) The orientation and electrochemical oxidation of hydroquinone chemisorbed on platinum electrodes in various weakly surface-active supporting electrolytes. J Electroanal Chem Interfacial Electrochem 162(1):143–152Google Scholar
  37. 37.
    Garcia-Araez N, Climent V, Herrero E, Feliu J, Lipkowski J (2005) Thermodynamic studies of chloride adsorption at the Pt(111) electrode surface from 0.1 M HClO4 solution. J Electroanal Chem 576(1):33–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandUSA
  2. 2.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Joint Center for Artificial PhotosynthesisLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Chemical Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China
  8. 8.Division of Condensed Matter Physics and Photon Science, School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  9. 9.Joint Center for Energy Storage ResearchLawrence Berkeley National LaboratoryBerkeleyUSA
  10. 10.School of Chemical, Biological and Environmental Engineering, Johnson HallOregon State UniversityCorvallisUSA
  11. 11.Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar FuelsBerlinGermany

Personalised recommendations