Skip to main content

Hydrothermal Solubilization–Hydrolysis–Dehydration of Cellulose to Glucose and 5-Hydroxymethylfurfural Over Solid Acid Carbon Catalysts


Solid acid catalysts based on graphite-like mesoporous carbon material Sibunit were developed for the one-pot solubilization–hydrolysis–dehydration of cellulose into glucose and 5-hydroxymethylfurfural (5-HMF). The catalysts were produced by treating Sibunit surface with three different procedures to form acidic and sulfo groups on the catalyst surface. The techniques used were: (1) sulfonation by H2SO4 at 80–250 °C, (2) oxidation by wet air or 32 v/v% solution of HNO3, and (3) oxidation-sulfonation what meant additional sulfonating all the oxidized carbons at 200 °C. All the catalysts were characterized by low-temperature N2 adsorption, titration with NaOH, TEM, XPS. Sulfonation of Sibunit was shown to be accompanied by surface oxidation (formation of acidic groups) and the high amount of acidic groups prevented additional sulfonation of the surface. All the Sibunit treatment methods increased the surface acidity in 3–15 times up to 0.14–0.62 mmol g−1 compared to pure carbon (0.042 mmol g−1). The catalysts were tested in the depolymerization of mechanically activated microcrystalline cellulose at 180 °C in pure water. The main products 5-HMF and glucose were produced with the yields in the range of 8–22 wt% and 12–46 wt%, respectively. The maximal yield were achieved over Sibunit sulfonated at 200 °C. An essential difference in the composition of main products obtained with solid acid Sibunit carbon catalysts (glucose, 5-HMF) and soluble in water H2SO4 catalysts (formic and levulinic acids) as well as strong dependence of the reaction kinetics on the morphology of carbon catalysts argue for heterogenious mechanism of cellulose depolymerization over Sibunit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Bhaumik P, Dhepe PL (2016) Solid acid catalyzed synthesis of furans from carbohydrates. Catal Rev 58:36–112

    CAS  Google Scholar 

  2. 2.

    Murzin D, Salmi T (2012) Catalysis for lignocellulosic biomass processing: methodological aspects. Catal Lett 142:676–689

    CAS  Google Scholar 

  3. 3.

    van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94

    Google Scholar 

  4. 4.

    van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, A versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    PubMed  Google Scholar 

  5. 5.

    Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    CAS  PubMed  Google Scholar 

  6. 6.

    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    CAS  PubMed  Google Scholar 

  7. 7.

    Mukherjee A, Dumont M-J, Raghavan V (2015) Review: sustainable production of hydroxymethylfurfural and levulinic acid: challenges and opportunities. Biomass Bioenergy 72:143–183

    CAS  Google Scholar 

  8. 8.

    Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47

    CAS  Google Scholar 

  9. 9.

    Howard J, Rackemann DW, Bartley JP, Samori C, Doherty WOS (2018) Conversion of sugar cane molasses to 5-hydroxymethylfurfural using molasses and bagasse-derived catalysts. ACS Sustain Chem Eng 6:4531–4538

    CAS  Google Scholar 

  10. 10.

    Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci 7:2803–2830

    CAS  Google Scholar 

  11. 11.

    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793

    CAS  Google Scholar 

  12. 12.

    Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183

    CAS  Google Scholar 

  13. 13.

    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    CAS  Google Scholar 

  14. 14.

    Cao L, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong X, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82

    CAS  PubMed  Google Scholar 

  15. 15.

    Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol. Solvent ACS Catal 2:930–934

    Google Scholar 

  16. 16.

    Flèche G (1982) Process for manufacturing 5-hydroxymethylfurfural. USA Patent 4339387

  17. 17.

    Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39:2883–2890

    CAS  Google Scholar 

  18. 18.

    Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    CAS  PubMed  Google Scholar 

  19. 19.

    Zhao Y, Lu WJ, Wang HT (2009) Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology. Chem Eng J 150:411–417

    CAS  Google Scholar 

  20. 20.

    Perez S, Mazeau K (2005) Conformation, structures, and morfologies of celluloses. In: Dimitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2 edn. Marcel Dekker, New York, pp 41–64

    Google Scholar 

  21. 21.

    Zhang ZC (2013) Chap. 3 - Emerging catalysis for 5-HMF formation from cellulosic carbohydrates. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 53–71.

    Chapter  Google Scholar 

  22. 22.

    Zakrzewska ME, Bogel-Lukasik E, Bogel-Lukasik R (2011) Ionic liquid-mediated formation of 5-hydroxymethylfurfural: a promising biomass-derived building block. Chem Rev 111:397–417

    CAS  PubMed  Google Scholar 

  23. 23.

    Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Google Scholar 

  24. 24.

    Gromov NV, Taran OP, Sorokina KN, Mischenko TI, Sivakumar U, Parmon VN (2016) New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 1: methods for biomass activation. Catal Ind 8:176–786

    Google Scholar 

  25. 25.

    Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuel 22:46–60

    CAS  Google Scholar 

  26. 26.

    Bobleter O (2005) Hydrothermal degradation and fractionation of saccharides. In: Dimitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2 edn. Marcel Dekker, New York, pp 893–913

    Google Scholar 

  27. 27.

    Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22

    CAS  Google Scholar 

  28. 28.

    Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    CAS  PubMed  Google Scholar 

  29. 29.

    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  PubMed  Google Scholar 

  30. 30.

    Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728

    CAS  Google Scholar 

  31. 31.

    Murzin DY, Murzina EV, Tokarev A, Shcherban ND, Wärnå J, Salmi T (2015) Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catal Today 2:169–176

    Google Scholar 

  32. 32.

    Kim K-H, Ihm S-K (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34

    CAS  PubMed  Google Scholar 

  33. 33.

    Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184

    CAS  Google Scholar 

  34. 34.

    Nakajima K, Okamura M, Kondo JN, Domen K, Tatsumi T, Hayashi S, Hara M (2008) Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem Mater 21:186–193

    Google Scholar 

  35. 35.

    Nakajima K, Hara M (2012) Amorphous carbon with SO3H groups as a solid brensted acid catalyst. ACS Catal 2:1296–1304

    CAS  Google Scholar 

  36. 36.

    Liu X-Y, Huang M, Ma H-L, Zhang Z-Q, Gao J-M, Zhu Y-L, Han X-J, Guo X-Y (2010) Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Mol J 15:7188–7196

    CAS  Google Scholar 

  37. 37.

    Bhatnagar A, Hogland W, Marques M, Sillanpaa M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511

    CAS  Google Scholar 

  38. 38.

    Burgess R, Buono C, Davies PR, Davies RJ, Legge T, Lai A, Lewis R, Morgan DJ, Robinson N, Willock DJ (2015) The functionalisation of graphite surfaces with nitric acid: identification of functional groups and their effects on gold deposition. J Catal 323:10–18

    CAS  Google Scholar 

  39. 39.

    Taran OP, Polyanskaya EM, Ogorodnikova OL, Descorme C, Besson M, Parmon VN (2011) Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. II: wet peroxide oxidation over oxidized carbon catalysts. Catal Ind 3:161–169

    Google Scholar 

  40. 40.

    Shrotri A, Kobayashi H, Kaiki H, Yabushita M, Fukuoka A (2017) Cellulose hydrolysis using oxidized carbon catalyst in a plug-flow slurry process. Ind Eng Chem Res 56:14471–14478

    CAS  Google Scholar 

  41. 41.

    Taran OP, Descorme C, Polyanskaya EM, Ayusheev AB, Besson M, Parmon VN (2013) Sibunit based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. III: wet air oxidation of phenol over oxidized carbon and Ru/C catalysts. Catal Ind 5:164–174

    Google Scholar 

  42. 42.

    Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    CAS  Google Scholar 

  43. 43.

    Onda A, Ochi T, Yanagisawa K (2009) Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions. Top Catal 52:801–807

    CAS  Google Scholar 

  44. 44.

    Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937

    CAS  Google Scholar 

  45. 45.

    Foo GS, Sievers C (2015) Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon. ChemSusChem 8:534–543

    CAS  PubMed  Google Scholar 

  46. 46.

    Guo H, Qi X, Li L, Smith RL Jr (2012) Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid. Bioresour Technol 116:355–359

    CAS  PubMed  Google Scholar 

  47. 47.

    Dora S, Bhaskar T, Singh R, Naik Viswanatha D, Adhikari DK (2012) Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresour Technol 120:318–321

    CAS  PubMed  Google Scholar 

  48. 48.

    Li S, Gu Z, Bjornson BE, Muthukumarappan A (2013) Biochar based solid acid catalyst hydrolyze biomass. J Environ Chem Eng 1:1174–1181

    CAS  Google Scholar 

  49. 49.

    Cao L, Yu IKM, Tsang DCW, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. Biores Technol 267:242–248

    CAS  Google Scholar 

  50. 50.

    Liu Z, Fu X, Tang S, Cheng Y, Zhu L, Xing L, Wang J, Xue L (2014) Sulfonated magnetic carbon nanotube arrays as effective solid acid catalysts for the hydrolyses of polysaccharides in crop stalks. Catal Commun 56:1–4

    CAS  Google Scholar 

  51. 51.

    Zhao X, Xu J, Wang A, Zhang T (2015) Porous carbon in catalytic transformation of cellulose. Chin J Catal 36:1419–1427

    CAS  Google Scholar 

  52. 52.

    Guo F, Fang Z, Xu CC, Smith RL Jr (2012) Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci 38:672–690

    CAS  Google Scholar 

  53. 53.

    Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Green chemistry: biodiesel made with sugar catalyst. Nature 438:178–178

    CAS  PubMed  Google Scholar 

  54. 54.

    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793

    CAS  PubMed  Google Scholar 

  55. 55.

    Shen S, Wang C, Han Y, Cai B, Li H (2014) Influence of reaction conditions on heterogeneous hydrolysis of cellulose over phenolic residue-derived solid acid. Fuel 134:573–578

    CAS  Google Scholar 

  56. 56.

    Li Y, Shen S, Wang C, Peng X, Yuan S (2018) The effect of difference in chemical composition between cellulose and lignin on carbon based solid acids applied for cellulose hydrolysis. Cellulose 25:1851–1863

    CAS  Google Scholar 

  57. 57.

    Fukuhara K, Nakajima K, Kitano M, Kato H, Hayashi S, Hara M (2011) Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups. ChemSusChem 4:778–784

    CAS  PubMed  Google Scholar 

  58. 58.

    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2010) Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci 12:1029–1034

    CAS  Google Scholar 

  59. 59.

    Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M (2009) Adsorption-enhanced hydrolysis of ОІ-1,4-glucan on graphene-based amorphous carbon bearing SO3H, COOH, and OH groups. Langmuir 25:5068–5075

    CAS  PubMed  Google Scholar 

  60. 60.

    Xiong X, Yu IKM, Chen SS, Tsang DCW, Cao L, Song H, Kwon EE, Ok YS, Zhang S, Poon CS (2018) Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal Today 314:52–61

    CAS  Google Scholar 

  61. 61.

    Van Pelt AH, Simakova OA, Schimming SM, Ewbank JL, Foo GS, Pidko EA, Hensen EJM, Sievers C (2014) Stability of functionalized activated carbon in hot liquid water. Carbon 77:143–154

    Google Scholar 

  62. 62.

    Taran OP, Polyanskaya EM, Ogorodnikova OL, Descorme C, Besson M, Parmon VN (2011) Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples. Catal Ind 2:381–386

    Google Scholar 

  63. 63.

    Yabushita M, Kobayashi H, Hasegawa JY, Hara K, Fukuoka A (2014) Entropically favored adsorption of cellulosic molecules onto carbon materials through hydrophobic functionalities. ChemSusChem 7:1443–1450

    CAS  PubMed  Google Scholar 

  64. 64.

    Surovikin VF, Plaxin GV, Likholobov VA, Tiunova LJ (1990) Porous carbonaceous material. USA Patent 4978649

  65. 65.

    Likholobov VA (2001) Catalysis by unique metal ion structures in solid matrices from science to application. In: Centi G, Wichterlová B, Bell AT (eds) NATO science series. II. Mathematics, physics and chemistry. V. 13. Kluwer Academic Publishers, Netherlands, pp 295–306

    Google Scholar 

  66. 66.

    Gromov NV, Taran OP, Semeykina VS, Danilova IG, Pestunov AV, Parkhomchuk EV, Parmon VN (2017) Solid acidic NbOx/ZrO2 catalysts for transformation of cellulose to glucose and 5-hydroxymethylfurfural in pure hot water. Catal Lett 147:1485–1495

    Google Scholar 

  67. 67.

    Pestunov AV, Kuzmin AO, Yatsenko DA, Pravdina MK, Taran OP (2015) The mechanical activation of crystal and wooden sawdust cellulose in various fine-grinding mills. J Siberian Fed Univ Chem 8:386–400

    Google Scholar 

  68. 68.

    Boehm HP (1966) Chemical identification of surface groups. Adv Catal 16:179–274

    CAS  Google Scholar 

  69. 69.

    Toles CA, Marshall WE, Johns MM (1997) Granular activated carbons from nutshells for the uptake of metals organic compounds. Carbon 35:1407–1414

    CAS  Google Scholar 

  70. 70.

    Park S, Baker J, Himmel M, Parilla P, Johnson D (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Likholobov VA (2001) Catalysis by novel carbon-based materials. In: Centi G, Wichterlová B, Bell AT (eds) Catalysis by unique metal ion structures in solid matrices from science to application, vol 13. NATO science series. II. Mathematics, Physics. Kluwer Academic Publishers, Netherlands, pp 295–306

    Google Scholar 

  72. 72.

    Shitova NB, Dobrynkin NM, Noskov AS, Prosvirin IP, Bukhtiyarov VI, Kochubei DI, Tsyrul’nikov PG, Shlyapin DA (2004) Formation of Ru–M/Sibunit catalysts for ammonia synthesis. Kinet Catal 45:414–421

    CAS  Google Scholar 

  73. 73.

    Rodríguez-Castellón E, Jiménez-López A, Eliche-Quesada D (2008) Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel 87:1195–1206

    Google Scholar 

  74. 74.

    Zhuang SX, Yamazaki M, Omata K, Takahashi Y, Yamada M (2001) Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts: II. Catalytic reduction of NO and SO2 by CO. Appl Catal B 31:133–143

    CAS  Google Scholar 

  75. 75.

    Sanders AFH, de Jong AM, de Beer VHJ, van Veen JAR, Niemantsverdriet JW (1999) Formation of cobalt–molybdenum sulfides in hydrotreating catalysts: a surface science approach. Appl Surf Sci 144–145:380–384

    Google Scholar 

  76. 76.

    Okamoto Y, Imanaka T (1988) Interaction chemistry between molybdena and alumina: infrared studies of surface hydroxyl groups and adsorbed carbon dioxide on aluminas modified with molybdate, sulfate, or fluorine anions. J Phys Chem 92:7102–7112

    CAS  Google Scholar 

  77. 77.

    Hibbert DB, Campbell RH (1988) Flue gas desulphurisation: catalytic removal of sulphur dioxide by carbon monoxide on sulphided La1 – xSrxCoO3. II. Reaction of sulphur dioxide and carbon monoxide in a flow system. Appl Catal 41:289–299

    CAS  Google Scholar 

  78. 78.

    Janaun J, Ellis N (2011) Role of silica template in the preparation of sulfonated mesoporous carbon catalysts. Appl Catal A 394:25–31

    CAS  Google Scholar 

  79. 79.

    Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2006) Esterification of higher fatty acids by a novel strong solid acid. Catal Today 116:157–161

    CAS  Google Scholar 

  80. 80.

    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  81. 81.

    Zemlyanov DY, Nagy A, Schlögl R (1998) The reaction of silver with NO/O2. Appl Surf Sci 133:171–183

    CAS  Google Scholar 

  82. 82.

    Motoyuki S (1993) Studies in surface science and catalysis. In: Fundamentals of adsorption, vol 80. Elsevier, Amsterdam

    Google Scholar 

  83. 83.

    Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    CAS  Google Scholar 

  84. 84.

    Morrison RT, Boyd RN (1977) Organic chemistry, 2nd edn. Allyn and Bacon Inc., Boston

    Google Scholar 

  85. 85.

    Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catal Today 278:74–81

    CAS  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (Project 17-53-16027) and Russian–French GDRI “Biomass”.

Author information



Corresponding author

Correspondence to Nikolay V. Gromov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gromov, N.V., Medvedeva, T.B., Taran, O.P. et al. Hydrothermal Solubilization–Hydrolysis–Dehydration of Cellulose to Glucose and 5-Hydroxymethylfurfural Over Solid Acid Carbon Catalysts. Top Catal 61, 1912–1927 (2018).

Download citation


  • Solubilization–hydrolysis–dehydration
  • Cellulose
  • Glucose
  • 5-Hydroxymethylfurfural
  • Carbon
  • Sibunit