Skip to main content
Log in

Effect of Ni on MCM-41 in the Adsorption of Nitrogen and Sulfur Compounds to Obtain Ultra-Low-Sulfur Diesel

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Adsorption of heterocyclic sulfur and nitrogen compounds like dibenzothiophene (DBT) and quinoline (Q), respectively, was carried out using mesostructured adsorbent MCM-41 and Ni/MCM-41 in calcined (C) and reduced (R) form. These materials were proved in a batch adsorption system using a model fuel diesel: a mixture of dodecane, DBT and Q with the same concentrations of ppmw of sulfur and nitrogen at 313 K and atmospheric pressure. When MCM-41 was impregnated with Ni, an important modification of the adsorption properties was observed, for example, the uptake of DBT was increased and this adsorption was twice in Ni/MCM-41 in reduce form than in the calcined form. On the other hand, for the nitrogen adsorption of Q diminished by 62 and 58%, considering Ni/MCM-41 in reduce form and in calcined form as adsorbent, respectively. This is a significant achievement regarding the desulfurization and denitrogenation, especially for commercial diesel without pretreatment. Moreover, the kinetic results were adjusted with second order considering Q as nitrogen and DBT as sulfur molecule. Data fitting for Q was achieved better by the Langmuir model for all materials than the Freundlich model, meanwhile the experimental adsorption data of DBT was fitted to the Freundlich model for Ni/MCM-41 calcinated and reduced form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Velu S, Ma X, Song CS, Namazian M, Sethuraman S, Venkataraman G (2005) Energy Fuels 19:1116–1125

    Article  CAS  Google Scholar 

  2. Song CS (2003) Catal Today 86(1–4):211–263

    Article  CAS  Google Scholar 

  3. Song CS, Ma XL (2003) Appl Catal B 41(1–2):207–238

    Article  CAS  Google Scholar 

  4. Liu K, Ng FTT (2010) Catal Today 149:28–34

    Article  CAS  Google Scholar 

  5. García-Martínez JC, Castillo-Araiza CO, De los Reyes Heredia JA, Trejo E, Montesinos A (2012) Chem Eng J 210:53–62

    Article  CAS  Google Scholar 

  6. Glaucia HCP, Rao Y, Klerk A (2017) Energy Fuels 31:14–36

    Article  CAS  Google Scholar 

  7. García-Martínez JC, González-Uribe HA, González-Brambila MM, Colín-Luna JA, Escobedo-García YE, López-Gaona A, Alvarado-Perea L (2018) Catal Today 305:40–48

    Article  CAS  Google Scholar 

  8. Wen J, Han X, Lin H, Zheng Y, Chu W (2010) Chem Eng J 164(1):29–36

    Article  CAS  Google Scholar 

  9. Jiang J, Ng FTT (2010) Adsorption 16:549–558

    Article  CAS  Google Scholar 

  10. Subhan F, Yang Z, Peng P, Ikram M, Rehman S (2014) J Hazard 270:82–91

    Article  CAS  Google Scholar 

  11. Almarri M, Ma X, Song Ch (2009) Energy Fuel 23(8):3940–3947

    Article  CAS  Google Scholar 

  12. Xiong J, Zhu W, Li H, Yang L, Chao Y, Wu P, Xun S, Jiang W, Zhang M, Li H (2015) J Mater Chem A 3:12738–12747

    Article  CAS  Google Scholar 

  13. Kwon JM, Moon JH, Bae YS, Lee DG, Sohn HC, Lee CH (2008) ChemSusChem 1(4):307–309

    Article  CAS  Google Scholar 

  14. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Chem Soc Rev 41:2590–2605

    Article  CAS  Google Scholar 

  15. Shahriar S, Han X, Lin H, Zheng Y (2016) Int J Chem React Eng 14(4):823–830

    CAS  Google Scholar 

  16. Hernández-Maldonado A, Yang R (2003) Ind Eng Chem Res 42:123–129

    Article  CAS  Google Scholar 

  17. Subhan F, Liu BS (2011) Chem Eng J 178:69–77

    Article  CAS  Google Scholar 

  18. Nair S, Tatarchuk B (2010) Fuel 89:3218–3225

    Article  CAS  Google Scholar 

  19. Ma X, Velu S, Kim JH, Song CS (2005) Appl Catal B 56:137–147

    Article  CAS  Google Scholar 

  20. Lee SW, Ryu JW, Min W (2003) Catal Surv Asia 7 (4):271–279

    Article  CAS  Google Scholar 

  21. Silva JMPF, Silveira EB, Costa ALH, Veloso CO, Henriques CA, Zotin FMZ, Paredes MLL, Reis RA, Chiaro SSX (2014) Ind Eng Chem Res 53:16000–16014

    Article  CAS  Google Scholar 

  22. Alvarado-Perea L, Wolff T, Veit P, Hilfert L, Edelmann FT, Hamel C, Seidel-Morgenstern A (2013) J Catal 305:154–168

    Article  CAS  Google Scholar 

  23. Yonemitsu M, Tanaka Y, Iwamoto M (1997) Chem Mater 9:2679–2681

    Article  CAS  Google Scholar 

  24. Azizian S, Fallah RN (2010) Appl Surf Sci 256(17):5153–5156

    Article  CAS  Google Scholar 

  25. Wang L, Wang A (2008) J Hazard Mater 160:173–180

    Article  CAS  Google Scholar 

  26. Ho YS, McKay G (1999) Process Biochem 34 (5):451–465

    Article  CAS  Google Scholar 

  27. Laredo GC, Vega-Merino PM, Montoya-de la Fuente JA, Mora-Vallejo RJ, Meneses-Ruiz E, Castillo JJ, Zapata-Rendon B (2016) Fuel 180:284–291

    Article  CAS  Google Scholar 

  28. Velu S, Song Ch, Engelhard MH, Chin YH (2005) Ind Eng Chem Res 44:5740–5749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Julio César García-Martínez would like to thank the Universidad Autónoma Metropolitana Azcapotzalco to the Energy Department and the Programa para el desarrollo profesional Docente (PRODEP) from México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio César García-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Martínez, J.C., González-Uribe, H.A., González-Brambila, M.M. et al. Effect of Ni on MCM-41 in the Adsorption of Nitrogen and Sulfur Compounds to Obtain Ultra-Low-Sulfur Diesel. Top Catal 61, 1721–1733 (2018). https://doi.org/10.1007/s11244-018-1021-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1021-3

Keywords

Navigation