Skip to main content
Log in

Dehydrochlorination of 1-Chlorobutane Over Nanocrystalline MgO: The Role of Electron-Acceptor Sites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nanocrystalline MgO aerogels possess high surface areas and outstanding reactivity with respect to variety of harmful organic substances. The catalytic activity of MgO aerogels in dehydrochlorination of 1-chlorobutane substantially increases with time due to partial MgO conversion to MgCl2. This catalytic activity increase and surface area decrease indicate that more active catalytic sites are formed on the surface during this reaction. The catalytic activity was found to increase significantly during the 1-chlorobutane dehydrochlorination reaction, which is accompanied by the MgO modification with chloride ions. The activation energy of this reaction over partially chlorinated MgO was found to be equal to 135 kJ/mol at T < 225 °C and 63 kJ/mol at T > 225 °C. For the first time the concentrations of electron-acceptor sites were measured during a catalytic reaction. No electron-acceptor sites were observed on the surface of initial AP–MgO samples. They appeared only during the reaction. A good correlation was observed between the catalytic activity and the concentration of weak electron-acceptor sites tested using perylene. The obtained results indicate that they may be the active sites accounting for 1-chlorobutane dehydrochlorination in the active state of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li YX, Klabunde KJ (1991) Langmuir 7:1388–1393

    Article  CAS  Google Scholar 

  2. Li YX, Koper O, Atteya M, Klabunde KJ (1992) Chem Mater 4:323–330

    Article  CAS  Google Scholar 

  3. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang DJ (1996) J Phys Chem 100:12142–12153

    Article  CAS  Google Scholar 

  4. Richards R, Li WF, Decker S, Davidson C, Koper O, Zaikovsk V, Volodin A, Rieker T, Klabunde KJ (2000) J Am Chem Soc 122:4921–4925

    Article  CAS  Google Scholar 

  5. Mishakov IV, Zaikovskii VI, Heroux DS, Bedilo AF, Chesnokov VV, Volodin AM, Martyanov IN, Filimonova SV, Parmon VN, Klabunde KJ (2005) J Phys Chem B 109:6982–6989

    Article  CAS  Google Scholar 

  6. Ilyina EV, Mishakov IV, Vedyagin AA, Bedilo AF, Klabunde KJ (2013) Microporous Mesoporous Mater 175:76–84

    Article  CAS  Google Scholar 

  7. Bedilo AF, Shuvarakova EI, Volodin AM, Ilyina EV, Mishakov IV, Vedyagin AA, Chesnokov VV, Heroux DS, Klabunde KJ (2014) J Phys Chem C 118:13715–13725

    Article  CAS  Google Scholar 

  8. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  9. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Curr Microbiol 44:49–55

    Article  CAS  Google Scholar 

  10. Bedilo AF, Sigel MJ, Koper OB, Melgunov MS, Klabunde KJ (2002) J Mater Chem 12:3599–3604

    Article  CAS  Google Scholar 

  11. Mishakov IV, Bedilo AF, Richards RM, Chesnokov VV, Volodin AM, Zaikovskii VI, Buyanov RA, Klabunde KJ (2002) J Catal 206:40–48

    Article  CAS  Google Scholar 

  12. Chesnokov VV, Bedilo AF, Heroux DS, Mishakov IV, Klabunde KJ (2003) J Catal 218:438–446

    Article  CAS  Google Scholar 

  13. Choudary BM, Mulukutla RS, Klabunde KJ (2003) J Am Chem Soc 125:2020–2021

    Article  CAS  Google Scholar 

  14. Gupta PP, Hohn KL, Erickson LE, Klabunde KJ, Bedilo AF (2004) AlChEm J 50:3195–3205

    Article  CAS  Google Scholar 

  15. Mishakov IV, Heroux DS, Chesnokov VV, Koscheev SG, Mel’gunov MS, Bedilo AF, Buyanov RA, Klabunde KJ (2005) J Catal 229:344–351

    Article  CAS  Google Scholar 

  16. Verziu M, Cojocaru B, Hu JC, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Green Chem 10:373–381

    Article  CAS  Google Scholar 

  17. Ilyina EV, Mishakov IV, Vedyagin AA, Cherepanova SV, Nadeev AN, Bedilo AF, Klabunde KJ (2012) Microporous Mesoporous Mater 160:32–40

    Article  CAS  Google Scholar 

  18. Mishakov IV, Ilyina EV, Bedilo AF, Vedyagin AA (2009) React Kinet Catal Lett 97:355–361

    Article  CAS  Google Scholar 

  19. Mishakov IV, Vedyagin AA, Bedilo AF, Zailovskii VI, Klabunde KJ (2009) Catal Today 144:278–284

    Article  CAS  Google Scholar 

  20. Mishakov IV, Vedyagin AA, Bedilo AF, Mel’gunov MS, Buyanov RA (2006) Dokl Phys Chem 410:251–254

    Article  CAS  Google Scholar 

  21. Bedilo AF, Volodin AM, Mishakov IV, Chesnokov VV, Il’ina EV, Tokareva IV, Shuvarakova EI (2014) Kinet Catal 55:520–527

    Article  CAS  Google Scholar 

  22. Vedyagin AA, Bedilo AF, Mishakov IV, Shuvarakova EI (2017) J Serb Chem Soc 82:523–538

    Article  CAS  Google Scholar 

  23. Heroux DS, Volodin AM, Zaikovski VI, Chesnokov VV, Bedilo AF, Klabunde KJ (2004) J Phys Chem B 108:3140–3144

    Article  CAS  Google Scholar 

  24. Moreira IDPR, Wojdel JC, Illas F, Chiesa M, Giamello E (2008) Chem Phys Lett 462:78–83

    Article  CAS  Google Scholar 

  25. Richards RM, Volodin AM, Bedilo AF, Klabunde KJ (2003) Phys Chem Chem Phys 5:4299–4305

    Article  CAS  Google Scholar 

  26. Volodin AM (2000) Catal Today 58:103–114

    Article  CAS  Google Scholar 

  27. Volodin AM, Avdeev VI, Malykhin SE, Bedilo AF (2017) Res Chem Intermed 43:1047–1061

    Article  CAS  Google Scholar 

  28. Malykhin SE, Volodin AM, Bedilo AF, Zhidomirov GM (2009) J Phys Chem C 113:10350–10353

    Article  CAS  Google Scholar 

  29. Bedilo AF, Shuvarakova EI, Rybinskaya AA, Medvedev DA (2014) J Phys Chem C 118:15779–15794

    Article  CAS  Google Scholar 

  30. Medvedev DA, Rybinskaya AA, Kenzhin RM, Volodin AM, Bedilo AF (2012) Phys Chem Chem Phys 14:2587–2598

    Article  CAS  Google Scholar 

  31. Bedilo AF, Volodin AM (2009) Kinet Catal 50:314–324

    Article  CAS  Google Scholar 

  32. Zotov RA, Molchanov VV, Volodin AM, Bedilo AF (2011) J Catal 278:71–77

    Article  CAS  Google Scholar 

  33. Garcia H, Roth HD (2002) Chem Rev 102:3947–4007

    Article  CAS  Google Scholar 

  34. Bedilo AF, Volodin AM, Zenkovets GA, Timoshok GV (1995) React Kinet Catal Lett 55:183–190

    Article  CAS  Google Scholar 

  35. Bedilo AF, Kim VI, Volodin AM (1998) J Catal 176:294–304

    Article  CAS  Google Scholar 

  36. Timoshok AV, Bedilo AF, Volodin AM (1996) React Kinet Catal Lett 59:165–171

    Article  CAS  Google Scholar 

  37. Yurpalov VL, Fedorova ED, Drozdov VA, Lavrenov AV (2016) Kinet Catal 57:540–545

    Article  CAS  Google Scholar 

  38. Corma A (1997) Curr Opin Solid State Mater Sci 2:63–75

    Article  CAS  Google Scholar 

  39. Busca G (2007) Chem Rev 107:5366–5410

    Article  CAS  Google Scholar 

  40. Reddy BM, Patil MK (2009) Chem Rev 109:2185–2208

    Article  CAS  Google Scholar 

  41. Moliner M, Rey F, Corma A (2013) Angew Chem Int Ed 52:13880–13889

    Article  CAS  Google Scholar 

  42. Osatiashtiani A, Lee AF, Granollers M, Brown D, Olivi L, Morales G, Melero JA, Wilson K (2015) ACS Catal 5:4345–4352

    Article  CAS  Google Scholar 

  43. Marquis S, Moissette A, Vezin H, Bremard C (2005) C R Chim 8:419–440

    Article  CAS  Google Scholar 

  44. Moissette A, Lobo RF, Vezin H, Al-Majnouni KA, Bremard C (2010) J Phys Chem C 114:10280–10290

    Article  CAS  Google Scholar 

  45. Al-Majnouni KA, Yun JH, Lobo RF (2011) ChemCatChem 3:1333–1341

    CAS  Google Scholar 

  46. Bedilo AF, Ivanova AS, Pakhomov NA, Volodin AM (2000) J Mol Catal A 158:409–412

    Article  CAS  Google Scholar 

  47. Pakhomov NA, Ivanova AS, Bedilo AF, Moroz EM, Volodin AM (2002) Stud Surf Sci Catal 143:353–360

    Article  CAS  Google Scholar 

  48. Bolshov VA, Volodin AM, Zhidomirov GM, Shubin AA, Bedilo AF (1994) J Phys Chem 98:7551–7554

    Article  CAS  Google Scholar 

  49. Fenelonov VB, Mel’gunov MS, Mishakov IV, Richards RM, Chesnokov VV, Volodin AM, Klabunde KJ (2001) J Phys Chem B 105:3937–3941

    Article  CAS  Google Scholar 

  50. Stamires DN, Turkevich J (1964) J Am Chem Soc 86:749–757

    Article  CAS  Google Scholar 

  51. Shih S (1983) J Catal 79:390–395

    Article  CAS  Google Scholar 

  52. Nash MJ, Shough AM, Fickel DW, Doren DJ, Lobo RF (2008) J Am Chem Soc 130:2460–2462

    Article  CAS  Google Scholar 

  53. Vishnetskaya MV, Emel’yanov AN, Shcherbakov NV, Rufov YN, Il’ichev AN (2004) Russ J Phys Chem 78:1918–1923

    Google Scholar 

  54. Richardson JT (1967) J Catal 9:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Russian Foundation for Basic Research (Project 16-33-00267-mol_a). The authors thank Dr. E. Gerasimov for the TEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina I. Shuvarakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvarakova, E.I., Bedilo, A.F., Chesnokov, V.V. et al. Dehydrochlorination of 1-Chlorobutane Over Nanocrystalline MgO: The Role of Electron-Acceptor Sites. Top Catal 61, 2035–2041 (2018). https://doi.org/10.1007/s11244-018-1000-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1000-8

Keywords

Navigation