Skip to main content
Log in

Sm on CeO2(111): A Case for Ceria Modification via Strong Metal–Ceria Interaction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The growth, electronic structure and stability of Sm on ordered CeO2(111) thin films grown on Cu(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), low energy electron diffraction, and scanning tunneling microscopy (STM). Metallic samarium was deposited on the CeO2(111) surface by thermal evaporation under ultrahigh vacuum conditions at room temperature. The XPS data suggest that metallic Sm is oxidized to Sm3+ upon the deposition of Sm on CeO2, accompanied by the reduction of Ce4+ to Ce3+. With increasing the Sm coverage, the concentration of Ce3+ increases monotonically. After depositing 6 ML of Sm, only Ce3+ is observed within the detection depth of XPS. The STM results indicate that Sm exhibits a two-dimensional growth on the CeO2(111) surface at low coverages. Annealing to higher temperatures leads to the agglomeration of Sm particles and concurrent diffusion of Sm into the ceria film. These results illustrate that Sm can modify both the electronic and structural properties of ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS (2000) J Catal 196(2):293–301

    Article  CAS  Google Scholar 

  2. Bao J, Liu Z, Zhang Y, Tsubaki N (2008) Catal Commun 9(5):913–918

    Article  CAS  Google Scholar 

  3. Sasirekha N, Sangeetha P, Chen Y-W (2014) J Phys Chem C 118(28):15226–15233

    Article  CAS  Google Scholar 

  4. Perez Ferrandez DM, Herguedas Fernandez I, Teley MPG, de Croon MHJM., Schouten JC, Nijhuis TA (2015) J Catal 330:396–405

    Article  CAS  Google Scholar 

  5. Campbell CT (2012) Nat Chem 4(8):597–598

    Article  CAS  PubMed  Google Scholar 

  6. Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) Angew Chem Int Ed 44(30):4778–4781

    Article  CAS  Google Scholar 

  7. Gao Y, Wang W, Chang S, Huang W (2013) ChemCatChem 5(12):3610–3620

    Article  CAS  Google Scholar 

  8. Bäumer M, Freund H-J (1999) Prog Surf Sci 61(7):127–198

    Article  Google Scholar 

  9. Campbell CT (1997) Surf Sci Rep 27(1):1–111

    Article  CAS  Google Scholar 

  10. Li M, Wu Z, Overbury SH (2013) J Catal 306:164–176

    Article  CAS  Google Scholar 

  11. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318(5857):1757

    Article  CAS  Google Scholar 

  12. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301(5635):935

    Article  CAS  PubMed  Google Scholar 

  13. Dvořák F, Stetsovych O, Steger M, Cherradi E, Matolínová I, Tsud N, Škoda M, Skála T, Mysliveček J, Matolín V (2011) J Phys Chem C 115(15):7496–7503

    Article  CAS  Google Scholar 

  14. Staudt T, Lykhach Y, Hammer L, Schneider MA, Matolín V, Libuda J (2009) Surf Sci 603(23):3382–3388

    Article  CAS  Google Scholar 

  15. Šutara F, Cabala M, Sedláček L, Skála T, Škoda M, Matolín V, Prince KC, Cháb V (2008) Thin Solid Films 516(18):6120–6124

    Article  CAS  Google Scholar 

  16. Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ (2006) Surf Sci 600(22):5004–5010

    Article  CAS  Google Scholar 

  17. Grinter DC, Ithnin R, Pang CL, Thornton G (2010) J Phys Chem C 114(40):17036–17041

    Article  CAS  Google Scholar 

  18. Matolín V, Johánek V, Škoda M, Tsud N, Prince KC, Skála T, Matolínová I (2010) Langmuir 26(16):13333–13341

    Article  CAS  PubMed  Google Scholar 

  19. Happel M, Mysliveček J, Johánek V, Dvořák F, Stetsovych O, Lykhach Y, Matolín V, Libuda J (2012) J Catal 289:118–126

    Article  CAS  Google Scholar 

  20. Wilson EL, Grau-Crespo R, Pang CL, Cabailh G, Chen Q, Purton JA, Catlow CRA, Brown WA, de Leeuw NH, Thornton G (2008) J Phys Chem C 112(29):10918–10922

    Article  CAS  Google Scholar 

  21. Wilson EL, Chen Q, Brown WA, Thornton G (2007) J Phys Chem C 111(38):14215–14222

    Article  CAS  Google Scholar 

  22. Zhou Y, Zhou J (2012) J Phys Chem C 116(17):9544–9549

    Article  CAS  Google Scholar 

  23. Carrasco J, López-Durán D, Liu Z, Duchoň T, Evans J, Senanayake SD, Crumlin EJ, Matolín V, Rodríguez JA, Ganduglia-Pirovano MV (2015) Angew Chem Int Ed 54(13):3917–3921

    Article  CAS  Google Scholar 

  24. Hu S, Wang Y, Wang W, Han Y, Fan Q, Feng X, Xu Q, Zhu J (2015) J Phys Chem C 119(7):3579–3588

    Article  CAS  Google Scholar 

  25. Kong D, Wang G, Pan Y, Hu S, Hou J, Pan H, Campbell CT, Zhu J (2011) J Phys Chem C 115(14):6715–6725

    Article  CAS  Google Scholar 

  26. Hu S, Wang W, Wang Y, Xu Q, Zhu J (2015) J Phys Chem C 119(32):18257–18266

    Article  CAS  Google Scholar 

  27. Wang W, Hu S, Han Y, Pan X, Xu Q, Zhu J (2016) Surf Sci 653:205–210

    Article  CAS  Google Scholar 

  28. Skála T, Tsud N, Prince KC, Matolín V (2011) Appl Surf Sci 257(8):3682–3687

    Article  CAS  Google Scholar 

  29. Škoda M, Cabala M, Cháb V, Prince KC, Sedláček L, Skála T, Šutara F, Matolín V (2008) Appl Surf Sci 254(14):4375–4379

    Article  CAS  Google Scholar 

  30. Skála T, Šutara F, Prince KC, Matolín V (2009) J Electron Spectrosc Relat Phenom 169(1):20–25

    Article  CAS  Google Scholar 

  31. Skála T, Šutara F, Cabala M, Škoda M, Prince KC, Matolín V (2008) Appl Surf Sci 254(21):6860–6864

    Article  CAS  Google Scholar 

  32. Ginting E, Hu S, Thorne JE, Zhou Y, Zhu J, Zhou J (2013) Appl Surf Sci 283:1–5

    Article  CAS  Google Scholar 

  33. Krishna K, Bueno-López A, Makkee M, Moulijn JA (2007) Appl Catal B 75(3–4):189–200

    Article  CAS  Google Scholar 

  34. Mandal S, Bando KK, Santra C, Maity S, James OO, Mehta D, Chowdhury B (2013) Appl Catal A 452:94–104

    Article  CAS  Google Scholar 

  35. Sutradhar N, Sinhamahapatra A, Pahari S, Jayachandran M, Subramanian B, Bajaj HC, Panda AB (2011) J Phys Chem C 115(15):7628–7637

    Article  CAS  Google Scholar 

  36. Alaydrus M, Sakaue M, Aspera SM, Wungu TDK, Linh NH, Linh TPT, Kasai H, Ishihara T, Mohri T (2014) J Phys Soc Jpn 83(9):094707

    Article  CAS  Google Scholar 

  37. Alaydrus M, Sakaue M, Aspera SM, Wungu TDK, Linh TPT, Kasai H, Ishihara T (2013) ECS Trans 57(1):2733–2739

    Article  Google Scholar 

  38. Chen S-Y, Chen R-J, Lee W, Dong C-L, Gloter A (2014) Phys Chem Chem Phys 16(7):3274–3281

    Article  CAS  PubMed  Google Scholar 

  39. Xie T, Wang X-D, Yao M, Liu X-S, Chen Y-G (2016) RSC Adv 6(24):20349–20356

    Article  CAS  Google Scholar 

  40. Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A (2013) RSC Adv 3(21):7953–7962

    Article  CAS  Google Scholar 

  41. Xu Q, Hu S, Cheng D, Feng X, Han Y, Zhu J (2012) J Chem Phys 136(15):154705

    Article  CAS  PubMed  Google Scholar 

  42. Torbrügge S, Cranney M, Reichling M (2008) Appl Phys Lett 93(7):073112

    Article  CAS  Google Scholar 

  43. Farmer JA, Baricuatro JH, Campbell CT (2010) J Phys Chem C 114(40):17166–17172

    Article  CAS  Google Scholar 

  44. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) Rev Sci Instrum 78(1):013705

    Article  CAS  PubMed  Google Scholar 

  45. Dufour G, Karnatak RC, Mariot JM, Bonnelle C (1976) Chem Phys Lett 42(3):433–436

    Article  CAS  Google Scholar 

  46. Yang A-B (1989) Retrospective theses and dissertations. 9254. http://lib.dr.iastate.edu/rtd/9254. Accessed 1989

  47. Kuchowicz M, Kołaczkiewicz J (2008) Surf Sci 602(24):3721–3727

    Article  CAS  Google Scholar 

  48. Mullins DR, Overbury SH, Huntley DR (1998) Surf Sci 409(2):307–319

    Article  CAS  Google Scholar 

  49. Pfau A, Schierbaum KD (1994) Surf Sci 321(1):71–80

    Article  CAS  Google Scholar 

  50. Skála T, Šutara F, Škoda M, Prince KC, Matolín V (2009) J Phys: Condens Matter 21(5):055005

    Google Scholar 

  51. Barin I (1995) Ca-CeTe. In: Thermochemical data of pure substances. Wiley, New York, pp 416–523. https://doi.org/10.1002/9783527619825.ch12e

    Chapter  Google Scholar 

  52. Zhou Y, Zhou J (2012) Surf Sci 606(7–8):749–753

    Article  CAS  Google Scholar 

  53. Zhao Y, Teng B, Yang Z, Zhao Y, Zhao L, Luo M (2011) J Phys Chem C 115(33):16461–16466

    Article  CAS  Google Scholar 

  54. Fukui K-i, Namai Y, Iwasawa Y (2002) Appl Surf Sci 188(3):252–256

    Article  CAS  Google Scholar 

  55. Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund HJ (2009) J Phys Chem C 113(15):6042–6049

    Article  CAS  Google Scholar 

  56. Jhang J-H, Schaefer A, Cartas W, Epuri S, Bäumer M, Weaver JF (2013) J Phys Chem C 117(41):21396–21406

    Article  CAS  Google Scholar 

  57. Stetsovych V, Pagliuca F, Dvořák F, Duchoň T, Vorokhta M, Aulická M, Lachnitt J, Schernich S, Matolínová I, Veltruská K, Skála T, Mazur D, Mysliveček J, Libuda J, Matolín V (2013) J Phys Chem Lett 4(6):866–871

    Article  CAS  PubMed  Google Scholar 

  58. Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T (2001) Solid State Ionics 140(3–4):191–199

    Article  CAS  Google Scholar 

  59. Zhao S, Gorte RJ (2004) Appl Catal A 277(1):129–136

    Article  CAS  Google Scholar 

  60. Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skala T, Bruix A, Illas F, Prince KC (2011) Nat Mater 10(4):310

    Article  CAS  PubMed  Google Scholar 

  61. Skála T, Tsud N, Prince KC, Matolín V (2011) J Phys: Condens Matter 23(21):215001

    Google Scholar 

  62. Suresh B, Ranjith T, Talgat I, Richard D, Artëm EM, Alfons S, Sudipta S (2009) Nanotechnology 20(8):085713

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. U1732272, 21473178 and 21403205), National Key R&D Program of China (No. 2017YFA0403402), China Postdoctoral Science Foundation (BH2310000032), and Chinese Universities Scientific Fund (WK2310000068) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfa Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, S., Xu, Q. et al. Sm on CeO2(111): A Case for Ceria Modification via Strong Metal–Ceria Interaction. Top Catal 61, 1227–1236 (2018). https://doi.org/10.1007/s11244-018-0977-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0977-3

Keywords

Navigation