Advertisement

Topics in Catalysis

, Volume 61, Issue 7–8, pp 664–673 | Cite as

Organocatalyzed Decarboxylative Trifluoromethylation of β-Ketoacids

  • Rui Zhang
  • Chuanfa Ni
  • Zhengbiao He
  • Jinbo Hu
Original Paper
  • 388 Downloads

Abstract

A new protocol has been developed for the synthesis of α-trifluoromethyl ketones via organocatalyzed decarboxylative trifluoromethylation of β-ketoacids with Togni’s reagent. Among various simple amine catalysts, primary amines and secondary amines were identified to be more effective than tertiary amines, with piperazine being the most effective. Mechanistic investigations suggested that the primary or secondary amine-catalyzed reactions proceed mainly through trifluoromethylation of an enamine intermediate, which is more effective than the tertiary amine-catalyzed pathway that involves an enol intermediate. By using piperazine as the optimal organocatalyst, various β-ketoacids, including the sterically hindered α,α-disubstituted ones, were converted into the corresponding α-trifluoromethyl ketones in good yields. This research not only provides a useful strategy for the efficient synthesis of a wide range of α-trifluoromethyl ketones under mild conditions, but also constitutes one of the few studies on decarboxylative alkylation of β-ketoacids, which can intrigue further exploitation on organocatalyzed asymmetric decarboxylative alkylation reactions.

Graphical Abstract

Keywords

Organocatalysis Trifluoromethylation Carboxylic acids Decarboxylation β-Ketoacids α-Trifluoromethyl ketones Togni’s reagent Piperazine 

Notes

Acknowledgements

Support of our work by the National Basic Research Program of China (2015CB931900), the National Key Research and Development Program of China (2016YFB0101200 and 2016YFB0101204), the National Natural Science Foundation of China (21632009, 21472221, 21421002, 21402227, and 21372246), the Key Programs of the Chinese Academy of Sciences (KGZD-EW-T08), the Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH049), Shanghai Academic Research Leader Program (15XD1504400), and the Youth Innovation Promotion Association CAS (2014231) is gratefully acknowledged.

Supplementary material

11244_2018_973_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1334 KB). Results for Cu(OAc)2-catalyzed decarboxylative trifluoromethylation of β-ketoacids 1; NMR spectra of compounds 3

References

  1. 1.
    Kirsch P (2013) Modern fluoroorganic chemistry: synthesis, reactivity applications, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Furuya T, Kamlet AS, Ritter T (2011) Nature 473:470CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu W, Wang J, Wang S, Gu Z, Aceña JL, Izawa K, Liu H, Soloshonok VA (2014) J Fluor Chem 167:37CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016) Chem Rev 116:422CrossRefPubMedGoogle Scholar
  6. 6.
    Prakash GKS, Yudin A (1997) Chem Rev 97:757CrossRefPubMedGoogle Scholar
  7. 7.
    Liu X, Xu C, Wang M, Liu Q (2015) Chem Rev 115:683CrossRefPubMedGoogle Scholar
  8. 8.
    Umemoto T (1996) Chem Rev 96:1757CrossRefPubMedGoogle Scholar
  9. 9.
    Charpentier J, Früh N, Togni A (2015) Chem Rev 115:650CrossRefPubMedGoogle Scholar
  10. 10.
    Studer A (2012) Angew Chem Int Ed 51:8950CrossRefGoogle Scholar
  11. 11.
    Chu L, Qing FL (2014) Acc Chem Res 47:1513CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Q, Ni C, Hu J (2017) Natl Sci Rev 4:303CrossRefGoogle Scholar
  13. 13.
    Tomashenko OA, Grushin VV (2011) Chem Rev 111:4475CrossRefPubMedGoogle Scholar
  14. 14.
    Besset T, Schneider C, Cahard D (2012) Angew Chem Int Ed 51:5048CrossRefGoogle Scholar
  15. 15.
    Liu T, Shen Q (2012) Eur J Org Chem 2012:6679CrossRefGoogle Scholar
  16. 16.
    Wu XF, Neumann H, Beller M (2012) Chem Asian J 7:1744CrossRefPubMedGoogle Scholar
  17. 17.
    Liu H, Gu Z, Jiang X (2013) Adv Synth Catal 355:617CrossRefGoogle Scholar
  18. 18.
    Alonso C, de Marigorta EM, Rubiales G, Palacios F (2015) Chem Rev 115:1847CrossRefPubMedGoogle Scholar
  19. 19.
    19 Xu J, Liu X, Fu Y (2014) Tetrahedron Lett 55:585CrossRefGoogle Scholar
  20. 20.
    Merino E, Nevado C (2014) Chem Soc Rev 43:6598CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Egami H, Sodeoka M (2014) Angew Chem Int Ed 53:8294CrossRefGoogle Scholar
  22. 22.
    Yang X, Wu T, Phipps RJ, Toste FD (2015) Chem Rev 115:826CrossRefPubMedGoogle Scholar
  23. 23.
    Guo X, Xiao YL, Wang X, Zhang X (2018) Angew Chem Int Ed.  https://doi.org/10.1002/anie.201711463 CrossRefGoogle Scholar
  24. 24.
    Parsons AT, Buchwald SL (2011) Angew Chem Int Ed 50:9120CrossRefGoogle Scholar
  25. 25.
    Xu J, Fu Y, Luo DF, Jiang YY, Xiao B, Liu ZJ, Gong TJ, Liu L (2011) J Am Chem Soc 133:15300CrossRefPubMedGoogle Scholar
  26. 26.
    Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J (2011) J Am Chem Soc 133:16410CrossRefPubMedGoogle Scholar
  27. 27.
    Xu J, Xiao B, Xie CQ, Luo DF, Liu L, Fu Y (2012) Angew Chem Int Ed 51:12551CrossRefGoogle Scholar
  28. 28.
    Wu X, Chu L, Qing FL (2013) Angew Chem Int Ed 52:2198CrossRefGoogle Scholar
  29. 29.
    He Z, Hu M, Luo T, Li L, Hu J (2012) Angew Chem Int Ed 51:11545CrossRefGoogle Scholar
  30. 30.
    He Z, Tan P, Hu J (2016) Org Lett 18:72CrossRefPubMedGoogle Scholar
  31. 31.
    He Z, Zhang R, Hu M, Li L, Ni C, Hu J (2013) Chem Sci 4:3478CrossRefGoogle Scholar
  32. 32.
    Xu X, Chen H, He J, Xu H (2017) Chin J Chem 35:1665CrossRefGoogle Scholar
  33. 33.
    Tan X, Liu Z, Shen H, Zhang P, Zhang Z, Li C (2017) J Am Chem Soc 139:12430CrossRefPubMedGoogle Scholar
  34. 34.
    He Z, Luo T, Hu M, Cao Y, Hu J (2012) Angew Chem Int Ed 51:3944CrossRefGoogle Scholar
  35. 35.
    Li Z, Cui Z, Liu ZQ (2013) Org Lett 15:406CrossRefPubMedGoogle Scholar
  36. 36.
    Patra T, Deb A, Manna S, Sharma U, Maiti D (2013) Eur J Org Chem 2013:5247Google Scholar
  37. 37.
    Xu P, Abdukader A, Hu K, Cheng Y, Zhu C (2014) Chem Commun 50:2308CrossRefGoogle Scholar
  38. 38.
    Yin J, Li Y, Zhang R, Jin K, Duan C (2014) Synthesis 46:607CrossRefGoogle Scholar
  39. 39.
    Shang XJ, Li Z, Liu ZQ (2015) Tetrahedron Lett 56:233CrossRefGoogle Scholar
  40. 40.
    Zhang HR, Chen DQ, Han YP, Qiu YF, Jin DP, Liu XY (2016) Chem Commun 52:11827CrossRefGoogle Scholar
  41. 41.
    Li G, Wang T, Fei F, Su YM, Li Y, Lan Q, Wang XS (2016) Angew Chem Int Ed 55:3491CrossRefGoogle Scholar
  42. 42.
    Lai YL, Lin DZ, Huang JM (2017) J Org Chem 82:597CrossRefPubMedGoogle Scholar
  43. 43.
    Wei XJ, Boon W, Hessel V, Noël T (2017) ACS Catal 7:7136CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tang WK, Feng YS, Xu ZW, Cheng ZF, Xu J, Dai JJ, Xu HJ (2017) Org Lett 19:5501CrossRefPubMedGoogle Scholar
  45. 45.
    Wang ZL (2013) Adv Synth Catal 355:2745CrossRefGoogle Scholar
  46. 46.
    Patra T, Maiti D (2017) Chem Eur J 23:7382CrossRefPubMedGoogle Scholar
  47. 47.
    Wei Y, Hu P, Zhang M, Su W (2017) Chem Rev 117:8864CrossRefPubMedGoogle Scholar
  48. 48.
    Blaquiere N, Shore DG, Rousseaux S, Fagnou K (2009) J Org Chem 74:6190CrossRefPubMedGoogle Scholar
  49. 49.
    Huang DK, Lei ZL, Zhu YJ, Liu ZJ, Hu XJ, Mao HF (2017) Tetrahedron Lett 58:3394CrossRefGoogle Scholar
  50. 50.
    Zhang R, Ni C, He Z, Hu J (2017) J Fluor Chem 203:166CrossRefGoogle Scholar
  51. 51.
    Westheimer FH, Jones WA (1941) J Am Chem Soc 63:3283CrossRefGoogle Scholar
  52. 52.
    Guthrie JP, Jordan F (1972) J Am Chem Soc 94:9136CrossRefGoogle Scholar
  53. 53.
    Spetnagel WJ, Klotz IM (1976) J Am Chem Soc 98:8199CrossRefPubMedGoogle Scholar
  54. 54.
    Leussing DL, Raghavan NV (1980) J Am Chem Soc 102:5635CrossRefGoogle Scholar
  55. 55.
    Haynes WM, Lide DR, Bruno TJ (eds) (2016) CRC handbook of chemistry and physics, 97th edn. CRC Press, Boca RatonGoogle Scholar
  56. 56.
    Yang CF, Wang JY, Tian SK (2011) Chem Commun 47:8343CrossRefGoogle Scholar
  57. 57.
    Yang CF, Shen C, Li HH, Tian SK (2012) Chin Sci Bull 57:2377CrossRefGoogle Scholar
  58. 58.
    Chen Y, Tian SK (2013) Chin J Chem 31:37CrossRefGoogle Scholar
  59. 59.
    Han F, Zhang X, Hu M, Jia L (2015) Org Biomol Chem 13:11466CrossRefPubMedGoogle Scholar
  60. 60.
    Berton M, Mello R, Williard PG, González-Núñez ME (2017) J Am Chem Soc 139:17414CrossRefPubMedGoogle Scholar
  61. 61.
    Murphy JA, Patterson CW (1993) J Chem Soc Perkin Trans 1:405CrossRefGoogle Scholar
  62. 62.
    He H, Zheng XJ, Li Y, Dai LX, You SL (2007) Org Lett 9:4339CrossRefPubMedGoogle Scholar
  63. 63.
    Evans DA, Mito S, Seidel D (2007) J Am Chem Soc 129:11583CrossRefPubMedGoogle Scholar
  64. 64.
    Lu Y, Li Y, Zhang R, Jin K, Duan C (2014) J Fluor Chem 161:128CrossRefGoogle Scholar
  65. 65.
    Prakash GKS, Paknia F, Vaghoo H, Rasul G, Mathew T, Olah GA (2010) J Org Chem 75:2219CrossRefPubMedGoogle Scholar
  66. 66.
    Sato K, Yuki T, Yamaguchi R, Hamano T, Tarui A, Omote M, Kumadaki I, Ando A (2009) J Org Chem 74:3815CrossRefPubMedGoogle Scholar
  67. 67.
    Saidalimu I, Suzuki S, Tokunaga E, Shibata N (2016) Chin J Chem 34:485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina

Personalised recommendations