Skip to main content
Log in

Organocatalyzed Decarboxylative Trifluoromethylation of β-Ketoacids

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A new protocol has been developed for the synthesis of α-trifluoromethyl ketones via organocatalyzed decarboxylative trifluoromethylation of β-ketoacids with Togni’s reagent. Among various simple amine catalysts, primary amines and secondary amines were identified to be more effective than tertiary amines, with piperazine being the most effective. Mechanistic investigations suggested that the primary or secondary amine-catalyzed reactions proceed mainly through trifluoromethylation of an enamine intermediate, which is more effective than the tertiary amine-catalyzed pathway that involves an enol intermediate. By using piperazine as the optimal organocatalyst, various β-ketoacids, including the sterically hindered α,α-disubstituted ones, were converted into the corresponding α-trifluoromethyl ketones in good yields. This research not only provides a useful strategy for the efficient synthesis of a wide range of α-trifluoromethyl ketones under mild conditions, but also constitutes one of the few studies on decarboxylative alkylation of β-ketoacids, which can intrigue further exploitation on organocatalyzed asymmetric decarboxylative alkylation reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

Notes

  1. It was found that when 1 equiv of K2CO3 was used, the yield of 3a dropped dramatically to 13%, indicating that the carboxylate anion of 1a itself is not the reactive species for trifluoromethylation. In this context, we rationalized that 1a and its salt worked together to promote the trifluoromethylation, where the salt of 1a plays a similar role as TMEDA, for a plausible explanation, see the supplementary material.

References

  1. Kirsch P (2013) Modern fluoroorganic chemistry: synthesis, reactivity applications, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Furuya T, Kamlet AS, Ritter T (2011) Nature 473:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Chem Rev 114:2432

    Article  CAS  PubMed  Google Scholar 

  4. Zhu W, Wang J, Wang S, Gu Z, Aceña JL, Izawa K, Liu H, Soloshonok VA (2014) J Fluor Chem 167:37

    Article  CAS  Google Scholar 

  5. Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016) Chem Rev 116:422

    Article  CAS  PubMed  Google Scholar 

  6. Prakash GKS, Yudin A (1997) Chem Rev 97:757

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Xu C, Wang M, Liu Q (2015) Chem Rev 115:683

    Article  CAS  PubMed  Google Scholar 

  8. Umemoto T (1996) Chem Rev 96:1757

    Article  CAS  PubMed  Google Scholar 

  9. Charpentier J, Früh N, Togni A (2015) Chem Rev 115:650

    Article  CAS  PubMed  Google Scholar 

  10. Studer A (2012) Angew Chem Int Ed 51:8950

    Article  CAS  Google Scholar 

  11. Chu L, Qing FL (2014) Acc Chem Res 47:1513

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Ni C, Hu J (2017) Natl Sci Rev 4:303

    Article  Google Scholar 

  13. Tomashenko OA, Grushin VV (2011) Chem Rev 111:4475

    Article  CAS  PubMed  Google Scholar 

  14. Besset T, Schneider C, Cahard D (2012) Angew Chem Int Ed 51:5048

    Article  CAS  Google Scholar 

  15. Liu T, Shen Q (2012) Eur J Org Chem 2012:6679

    Article  CAS  Google Scholar 

  16. Wu XF, Neumann H, Beller M (2012) Chem Asian J 7:1744

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Gu Z, Jiang X (2013) Adv Synth Catal 355:617

    Article  CAS  Google Scholar 

  18. Alonso C, de Marigorta EM, Rubiales G, Palacios F (2015) Chem Rev 115:1847

    Article  CAS  PubMed  Google Scholar 

  19. 19 Xu J, Liu X, Fu Y (2014) Tetrahedron Lett 55:585

    Article  CAS  Google Scholar 

  20. Merino E, Nevado C (2014) Chem Soc Rev 43:6598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Egami H, Sodeoka M (2014) Angew Chem Int Ed 53:8294

    Article  CAS  Google Scholar 

  22. Yang X, Wu T, Phipps RJ, Toste FD (2015) Chem Rev 115:826

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Xiao YL, Wang X, Zhang X (2018) Angew Chem Int Ed. https://doi.org/10.1002/anie.201711463

    Article  Google Scholar 

  24. Parsons AT, Buchwald SL (2011) Angew Chem Int Ed 50:9120

    Article  CAS  Google Scholar 

  25. Xu J, Fu Y, Luo DF, Jiang YY, Xiao B, Liu ZJ, Gong TJ, Liu L (2011) J Am Chem Soc 133:15300

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J (2011) J Am Chem Soc 133:16410

    Article  CAS  PubMed  Google Scholar 

  27. Xu J, Xiao B, Xie CQ, Luo DF, Liu L, Fu Y (2012) Angew Chem Int Ed 51:12551

    Article  CAS  Google Scholar 

  28. Wu X, Chu L, Qing FL (2013) Angew Chem Int Ed 52:2198

    Article  CAS  Google Scholar 

  29. He Z, Hu M, Luo T, Li L, Hu J (2012) Angew Chem Int Ed 51:11545

    Article  CAS  Google Scholar 

  30. He Z, Tan P, Hu J (2016) Org Lett 18:72

    Article  CAS  PubMed  Google Scholar 

  31. He Z, Zhang R, Hu M, Li L, Ni C, Hu J (2013) Chem Sci 4:3478

    Article  CAS  Google Scholar 

  32. Xu X, Chen H, He J, Xu H (2017) Chin J Chem 35:1665

    Article  CAS  Google Scholar 

  33. Tan X, Liu Z, Shen H, Zhang P, Zhang Z, Li C (2017) J Am Chem Soc 139:12430

    Article  CAS  PubMed  Google Scholar 

  34. He Z, Luo T, Hu M, Cao Y, Hu J (2012) Angew Chem Int Ed 51:3944

    Article  CAS  Google Scholar 

  35. Li Z, Cui Z, Liu ZQ (2013) Org Lett 15:406

    Article  CAS  PubMed  Google Scholar 

  36. Patra T, Deb A, Manna S, Sharma U, Maiti D (2013) Eur J Org Chem 2013:5247

  37. Xu P, Abdukader A, Hu K, Cheng Y, Zhu C (2014) Chem Commun 50:2308

    Article  CAS  Google Scholar 

  38. Yin J, Li Y, Zhang R, Jin K, Duan C (2014) Synthesis 46:607

    Article  CAS  Google Scholar 

  39. Shang XJ, Li Z, Liu ZQ (2015) Tetrahedron Lett 56:233

    Article  CAS  Google Scholar 

  40. Zhang HR, Chen DQ, Han YP, Qiu YF, Jin DP, Liu XY (2016) Chem Commun 52:11827

    Article  CAS  Google Scholar 

  41. Li G, Wang T, Fei F, Su YM, Li Y, Lan Q, Wang XS (2016) Angew Chem Int Ed 55:3491

    Article  CAS  Google Scholar 

  42. Lai YL, Lin DZ, Huang JM (2017) J Org Chem 82:597

    Article  CAS  PubMed  Google Scholar 

  43. Wei XJ, Boon W, Hessel V, Noël T (2017) ACS Catal 7:7136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang WK, Feng YS, Xu ZW, Cheng ZF, Xu J, Dai JJ, Xu HJ (2017) Org Lett 19:5501

    Article  CAS  PubMed  Google Scholar 

  45. Wang ZL (2013) Adv Synth Catal 355:2745

    Article  CAS  Google Scholar 

  46. Patra T, Maiti D (2017) Chem Eur J 23:7382

    Article  CAS  PubMed  Google Scholar 

  47. Wei Y, Hu P, Zhang M, Su W (2017) Chem Rev 117:8864

    Article  CAS  PubMed  Google Scholar 

  48. Blaquiere N, Shore DG, Rousseaux S, Fagnou K (2009) J Org Chem 74:6190

    Article  CAS  PubMed  Google Scholar 

  49. Huang DK, Lei ZL, Zhu YJ, Liu ZJ, Hu XJ, Mao HF (2017) Tetrahedron Lett 58:3394

    Article  CAS  Google Scholar 

  50. Zhang R, Ni C, He Z, Hu J (2017) J Fluor Chem 203:166

    Article  CAS  Google Scholar 

  51. Westheimer FH, Jones WA (1941) J Am Chem Soc 63:3283

    Article  CAS  Google Scholar 

  52. Guthrie JP, Jordan F (1972) J Am Chem Soc 94:9136

    Article  CAS  Google Scholar 

  53. Spetnagel WJ, Klotz IM (1976) J Am Chem Soc 98:8199

    Article  CAS  PubMed  Google Scholar 

  54. Leussing DL, Raghavan NV (1980) J Am Chem Soc 102:5635

    Article  CAS  Google Scholar 

  55. Haynes WM, Lide DR, Bruno TJ (eds) (2016) CRC handbook of chemistry and physics, 97th edn. CRC Press, Boca Raton

    Google Scholar 

  56. Yang CF, Wang JY, Tian SK (2011) Chem Commun 47:8343

    Article  CAS  Google Scholar 

  57. Yang CF, Shen C, Li HH, Tian SK (2012) Chin Sci Bull 57:2377

    Article  CAS  Google Scholar 

  58. Chen Y, Tian SK (2013) Chin J Chem 31:37

    Article  CAS  Google Scholar 

  59. Han F, Zhang X, Hu M, Jia L (2015) Org Biomol Chem 13:11466

    Article  CAS  PubMed  Google Scholar 

  60. Berton M, Mello R, Williard PG, González-Núñez ME (2017) J Am Chem Soc 139:17414

    Article  CAS  PubMed  Google Scholar 

  61. Murphy JA, Patterson CW (1993) J Chem Soc Perkin Trans 1:405

    Article  Google Scholar 

  62. He H, Zheng XJ, Li Y, Dai LX, You SL (2007) Org Lett 9:4339

    Article  CAS  PubMed  Google Scholar 

  63. Evans DA, Mito S, Seidel D (2007) J Am Chem Soc 129:11583

    Article  CAS  PubMed  Google Scholar 

  64. Lu Y, Li Y, Zhang R, Jin K, Duan C (2014) J Fluor Chem 161:128

    Article  CAS  Google Scholar 

  65. Prakash GKS, Paknia F, Vaghoo H, Rasul G, Mathew T, Olah GA (2010) J Org Chem 75:2219

    Article  CAS  PubMed  Google Scholar 

  66. Sato K, Yuki T, Yamaguchi R, Hamano T, Tarui A, Omote M, Kumadaki I, Ando A (2009) J Org Chem 74:3815

    Article  CAS  PubMed  Google Scholar 

  67. Saidalimu I, Suzuki S, Tokunaga E, Shibata N (2016) Chin J Chem 34:485

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of our work by the National Basic Research Program of China (2015CB931900), the National Key Research and Development Program of China (2016YFB0101200 and 2016YFB0101204), the National Natural Science Foundation of China (21632009, 21472221, 21421002, 21402227, and 21372246), the Key Programs of the Chinese Academy of Sciences (KGZD-EW-T08), the Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SLH049), Shanghai Academic Research Leader Program (15XD1504400), and the Youth Innovation Promotion Association CAS (2014231) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Hu.

Additional information

In memory of Professor George A. Olah (1927–2017)

Electronic supplementary material

Below is the link to the electronic supplementary material.

11244_2018_973_MOESM1_ESM.docx

Supplementary material 1 (DOCX 1334 KB). Results for Cu(OAc)2-catalyzed decarboxylative trifluoromethylation of β-ketoacids 1; NMR spectra of compounds 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ni, C., He, Z. et al. Organocatalyzed Decarboxylative Trifluoromethylation of β-Ketoacids. Top Catal 61, 664–673 (2018). https://doi.org/10.1007/s11244-018-0973-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0973-7

Keywords

Navigation