Skip to main content

Advertisement

Log in

Direct Measurements of Surface Free Energy of Solid Solutions: Phase Transitions and Complexions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Surfaces are key elements of nanomaterials and catalysts. The main thermodynamic properties of surfaces are their chemical composition and energy. To determine the composition of the surface, there are a number of effective methods such as AES, XPS, TEM. Direct measurements of the interfacial free energy of “solid–gas” interface are practically not carried out. This is related to experimental difficulties. We have developed a method for in situ measurements of the surface energy of solid metals and alloys. We conducted the experiments on two-component Cu-based systems in an inert or reducing gas atmosphere. The measurements on Cu [Ag] and Cu [Co] solid solutions show the presence of phase transitions on the surfaces. The isotherms of the surface energy have singularities (the minimum in the case of copper solid solutions with silver and the maximum in the case of solid solutions with cobalt). In both cases, the surface phase transitions lead to the surface miscibility gap: a monolayer (multilayer) formation (Cu–Ag) or formation of nanoscale particles (Cu–Co). In accordance with the bulk phase diagrams, the concentration and temperature of the surface phase transitions correspond to the solid solution in the bulk. Experiments on similar systems (Cu–Fe, Cu–Pb) lead to the conclusion that in all peritectic systems, an increase in the surface energy by adding a component with a higher melting point and surface phase transitions “surface solid solution—two-phase surface with particles” should be expected. In eutectic systems, the component with a lower melting point decreases the surface energy and forms continuous layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  2. King DA, Woodruff DP (1994) Phase transitions and adsorbate restructuring at metal surface. Elsevier, New York

    Google Scholar 

  3. Freeman AJ, Wang CS, Kxakauer H, Posternak M: (1980) Electronic structure of surfaces, surface magnetism and surface phase transitions. J Phys Colloques 41:C1-39–C1-41

    Google Scholar 

  4. Stampfl C (2005) Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics. Catal Today 105:17–35

    Article  CAS  Google Scholar 

  5. Wortis M, Svrakic NM (1982) Surface phases and surface phase transitions: a renormalization-group approach. IEEE Trans Magn 18:721–727

    Article  Google Scholar 

  6. Zhevnenko SN, Chernyshikhin SV (2017) Surface phase transitions in Cu-based solid solutions. Appl Surf Sci 421A:77–81

    Article  Google Scholar 

  7. Stanley HE (1971) Introduction to phase transitions and critical phenomena, Oxford University Press, Oxford

    Google Scholar 

  8. Eustathopoulos N, Nicholas M, Drevet B (1999) Wettability at high temperatures. Elsevier, Netherlands

    Google Scholar 

  9. Mekler C, Kaptay G (2008) Calculation of surface tension and surface phase transition line in binary Ga–Tl system. Mat Sci Eng A 495:65–69

    Article  Google Scholar 

  10. Udin H (1940) Surface tension of solid copper. Doctor Thesis, Massachusetts Institute of Technology

  11. Hondros ED, Gladman D (1968) Surface energy and impurity adsorption on gold heated in air. Sur Sci 9:471–475

    Article  CAS  Google Scholar 

  12. Gershman EI, Zhevnenko SN (2010) Method of in situ measuring surface tension of a solid-gas interface. Phys Met Metallogr 110:102–107

    Article  Google Scholar 

  13. Herring C (1953) In: Gomer R, Smith CS (eds) Structure and properties of solid surfaces, Chap. 1, University of Chicago Press, Chicago, pp 5–81

    Google Scholar 

  14. Vermaak JS, Wilsdorf DK (1968) : Measurement of the average surface stress of gold as a function of temperature in the temperature range 50–985.deg. J Phys Chem 72:4150–4154

    Article  CAS  Google Scholar 

  15. Foiles SM (1994) Evaluation of harmonic methods for calculating the free energy of defects in solids. Phys Rev B 49:14930–14939

    Article  CAS  Google Scholar 

  16. Meier GH (2015) Thermodynamics of surfaces and interfaces: concepts in inorganic materials. Cambridge University Press, Cambridge

    Google Scholar 

  17. Hayward ER, Greenough AP (1959) The surface energy of solid nickel. J Inst Met 88:217–220

    Google Scholar 

  18. Hondros ED, McLean D (1974) Cohesion margin of copper. Phil Mag 29:771–796

    Article  CAS  Google Scholar 

  19. Price AT, Holl HA, Greenough AP (1964) The surface energy and self diffusion coefficient of solid iron above 1350 °C. Acta Met 12:49–58

    Article  CAS  Google Scholar 

  20. Inman MC, McLean D, Tipler HR (1963) Interfacial free energy of copper-antimony alloys. Proc R Soc A 273:538–557

    Article  Google Scholar 

  21. Pranatis AM, Pound GM (1955) Viscous flow of copper at high temperatures. J Min A 203:664–668

    Google Scholar 

  22. Udin H, Shaler AJ, Wulff J (1949) Surface tension of solid copper. Trans Met Soc AIME 185:186–190

    Google Scholar 

  23. Bokshtein BS, Vaganov DV, Zhevnenko SN (2007) Surface tension isotherms of a free surface and grain boundaries in the Cu–Sn system. Phys Met Metallogr 104(6):564–570

    Article  Google Scholar 

  24. Zhevnenko SN (2013) Interfacial free energy of Cu–Co solid solutions. Metall MaterTrans A 44:2533–2542

    Article  CAS  Google Scholar 

  25. Buttner FH, Funk ER, Udin H (1952) Adsorption of oxygen on silver. J Phys Chem 56:657–660

    Article  CAS  Google Scholar 

  26. Zhevnenko S, Khayrullin AK (2016) Interfacial free energy and viscosity of Cu(Ag) solid solutions. J Phys Chem C 120:14082–14087

    Article  CAS  Google Scholar 

  27. Buttner FH, Funk ER, Udin H (1952) Viscous creep of gold wires near the melting point. J Met 4:401–407

    CAS  Google Scholar 

  28. Hilliard JE, Cohen M, Averbach BL (1960) Grain-boundary energies in gold-copper alloys. Acta Met 8:26–31

    Article  Google Scholar 

  29. Alexander BH, Dawson MH, Kling HP (1951) The deformation of gold wire at high temperature. J App Phys 22(4):439–443

    Article  CAS  Google Scholar 

  30. Jones H, Leak JM (1966) The effect of surface adsorption on zero creep measurements in iron-silicon alloys. Acta Met 14:21–27

    Article  CAS  Google Scholar 

  31. Hondros ED (1967) Interfacial segregation of nitrogen in iron. J Met Sci 1:36–39

    Article  CAS  Google Scholar 

  32. Murr LE, Wong GI, Horylev RJ (1973) Measurement of interfacial free energies and associated temperature coefficients in 304 stainless steel. Acta Met 21:595–604

    Article  CAS  Google Scholar 

  33. Zhevnenko S (2015) Surface free energy of copper-based solid solutions. J Phys Chem C 119:2566–2571

    Article  CAS  Google Scholar 

  34. Khairullin A, Nikulkina V, Zhevnenko S, Rodin A (2017) Peculiarity of grain boundary diffusion of Fe and Co in Cu. Def Dif Forum 380:135–140

    Article  Google Scholar 

  35. Treglia G, Legrand B, Ducastelle F, Saul A, Gallis C, Meunier I, Mottet C, Senhaji A (1999) Alloy surfaces: segregation, reconstruction and phase transitions. Comput Mater Sci 15:196–235

    Article  CAS  Google Scholar 

  36. Braems I, Creuze J, Berthier F, Tétot R, Legrand B (2008) Effect of a size mismatch on bulk and surface alloy interactions: the illustrative example of the Cu–Ag system. Surf Sci 602(10):1903–1915

    Article  CAS  Google Scholar 

  37. Wang JY, du Plessis J, Terblans JJ, van Wyk GN (1999) Equilibrium surface segregation of silver to the low-index surfaces of a copper single crystal. Surf Int Anal 28:73–76

    Article  Google Scholar 

  38. Novakovic R, Ricci E, Giuranno D, Passerone A (2005) Surface and transport properties of Ag–Cu liquid alloys. Surf Sci 576:175–187

    Article  CAS  Google Scholar 

  39. Zhevnenko S, Rodin A, Smirnov A (2016) Surface phase transition in Cu-Fe solid solutions. Mat Lett 178:1–4

    Article  CAS  Google Scholar 

  40. Zhevnenko SN, Gershman EI (2012) Grain boundary phase transformation in Cu–Co solid solutions. Jalcom 536(1):S554-S558

    Google Scholar 

  41. Yeomans JM (1992) Statistical mechanics of phase transitions. Clarendon Press, Oxford

    Google Scholar 

  42. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  43. McLean M (1971) Determination of the surface energy of copper as a function of crystallographic orientation and temperature. Acta Met 19(4):387–393

    Article  CAS  Google Scholar 

  44. Straumal BB, Sauvage X, Baretzky B, Mazilkin AA, Valiev RZ (2014) Grain boundary films in Al–Zn alloys after high pressure torsion. Scripta Mat 70:59–62

    Article  CAS  Google Scholar 

  45. Straumal BB, Korneva A, Kogtenkova O, Kurmanaeva L, Zięba P, Wierzbicka-Miernik A, Zhevnenko SN, Baretzky B (2014) Grain boundary wetting and premelting in the Cu–Co alloys. Jalcom 615(1):S183-S187

    Google Scholar 

  46. Straumal BB, Mazilkin AA, Baretzky B (2016) Grain boundary complexions and pseudopartial wetting. Curr Opin Solid State Mater Sci 20:247–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research has been carried out with financial support from the Programme of Creation and Development of the National University of Science and Technology “MISiS” and the Russian Scientific Foundation, project # 16-12-10478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Zhevnenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhevnenko, S. Direct Measurements of Surface Free Energy of Solid Solutions: Phase Transitions and Complexions. Top Catal 61, 1707–1715 (2018). https://doi.org/10.1007/s11244-018-0972-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0972-8

Keywords

Navigation