Skip to main content
Log in

Synthesis of Chiral Dendrimer-Encapsulated Nanoparticle (DEN) Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Several synthetic strategies were developed for the preparation of chiral dendrimer-encapsulated Pt nanoparticle (Pt DEN) catalysts. In one approach, regular OH-terminated polyamidoamine (PAMAM) dendrimers were first derivatized with cinchonidine using “click” chemistry and sebacic acid as a linker. As many as half of the 64 terminal OH groups in a 4th generation PAMAM dendrimer could be modified this way, and the overall cinchonidine content could be tuned by controlling the CD:PAMAM ratio during synthesis. Platinum nanoparticles were then added to these cinchonidine-modified dendrimers. In an alternative route, regular Pt DENs were made first using PAMAM, and the resulting material was then derivatized with cinchonidine. The two synthetic routes proved successful, but led to materials with different spectroscopic and catalytic properties, presumably because the metal nanoparticles in the first case are made near the cinchonidine functionality, in the outside of the dendrimer structure rather than in its inside, as believed to be the case with the second procedure. A potential complication related to the poisoning of the Pt nanoparticle surface during synthesis was also identified in the second protocol. The catalytic performance of these catalysts for the hydrogenation of α-ketoesters proved to be poor in all cases, presumably because of a number of problems associated with mass transport limitations inside the dendrimer structures and restricted flexibility of the outer chiral branches, which may not be able to interact with the catalytic surfaces. Nevertheless, interesting synthetic lessons were derived from our work with potential value for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zaera F (2009) Acc Chem Res 42:1152

    Article  CAS  PubMed  Google Scholar 

  2. Ye R, Hurlburt TJ, Sabyrov K, Alayoglu S, Somorjai GA (2016) Proc Natl Acad Sci USA 113:5159

    Article  CAS  PubMed  Google Scholar 

  3. Zaera F (2017) ACS Catal 7:4947

    Article  CAS  Google Scholar 

  4. Hutchings GJ (2005) Annu Rev Mater Res 35:143

    Article  CAS  Google Scholar 

  5. Baiker A (2015) Chem Soc Rev 44:7449

    Article  CAS  PubMed  Google Scholar 

  6. Gellman AJ, Tysoe WT, Zaera F (2015) Catal Lett 145:220

    Article  CAS  Google Scholar 

  7. Zaera F (2017) Chem Soc Rev 46:7374

    Article  CAS  PubMed  Google Scholar 

  8. Blaser H-U (2010) Top Catal 53:997

    Article  CAS  Google Scholar 

  9. Orito Y, Imai S, Niwa S (1980) J Chem Soc Jpn 670

  10. Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732

    Article  CAS  Google Scholar 

  11. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  PubMed  Google Scholar 

  12. Ma Z, Zaera F (2009) Chiral modification of catalytic surfaces. In: Ozkan US (ed) Design of heterogeneous catalysis: new approaches based on synthesis, characterization, and modelling. Wiley-VCH, Weinheim, pp 113–140

    Chapter  Google Scholar 

  13. Bartók M (2006) Curr Org Chem 10:1533

    Article  Google Scholar 

  14. Corma A, Garcia H (2006) Adv Synth Catal 348:1391

    Article  CAS  Google Scholar 

  15. Copéret C, Basset J-M (2007) Adv Synth Catal 349:78

    Article  CAS  Google Scholar 

  16. Pujari SP, Scheres L, Marcelis ATM, Zuilhof H (2014) Angew Chem Int Ed 53:2

    Article  CAS  Google Scholar 

  17. Hong J, Lee I, Zaera F (2011) Top Catal 54:1340

    Article  CAS  Google Scholar 

  18. Hong J, Zaera F (2012) J Am Chem Soc 134:13056

    Article  CAS  PubMed  Google Scholar 

  19. Corma A, Iborra S, Rodríguez I, Iglesias M, Sánchez F (2002) Catal Lett 82:237

    Article  CAS  Google Scholar 

  20. Zhao W, Zhang Y, Qu C, Zhang L, Wang J, Cui Y (2014) Catal Lett 144:1681

    Article  CAS  Google Scholar 

  21. Hong J, Lee I, Zaera F (2014) Catal Sci Technol 5:680

    Article  Google Scholar 

  22. Blaser H-U, Jalett H-P, Müller M, Studer M (1997) Catal Today 37:441

    Article  CAS  Google Scholar 

  23. Huang Y, Xu S, Lin VSY (2011) ChemCatChem 3:690

    Article  CAS  Google Scholar 

  24. Azmat MU, Gue Y, Guo Y, Lu G, Wang Y (2012) J Porous Mater 19:605

    Article  CAS  Google Scholar 

  25. Li X, Wu P (2014) Curr Org Chem 18:1242

    Article  CAS  Google Scholar 

  26. Weng Z, Zaera F (2014) J Phys Chem C 118:3672

    Article  CAS  Google Scholar 

  27. Kumar G, Lien C-H, Janik MJ, Medlin JW (2016) ACS Catal 6:5086

    Article  CAS  Google Scholar 

  28. Gross E, Liu JH, Alayoglu S, Marcus MA, Fakra SC, Toste FD, Somorjai GA (2013) J Am Chem Soc 135:3881

    Article  CAS  PubMed  Google Scholar 

  29. Wang D, Astruc D (2013) Coord Chem Rev 257:2317

    Article  CAS  Google Scholar 

  30. De Jesús E, Flores JC (2008) Ind Eng Chem Res 47:7968

    Article  CAS  Google Scholar 

  31. Pittelkow M, Brock-Nannestad T, Moth-Poulsen K, Christensen JB (2008) Chem Commun 2358

  32. Gade LH (2014) Molecular catalysts. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 407–422

    Google Scholar 

  33. Kassube JK, Gade LH (2006) Top Organomet Chem 20:61

    Article  CAS  Google Scholar 

  34. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692

    Article  CAS  PubMed  Google Scholar 

  35. Zhao M, Crooks RM (1999) Angew Chem Int Ed 38:364

    Article  CAS  Google Scholar 

  36. Lang H, May RA, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832

    Article  CAS  PubMed  Google Scholar 

  37. Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027

    Article  CAS  PubMed  Google Scholar 

  38. Zaera F (2013) ChemSusChem 6:1797

    Article  CAS  PubMed  Google Scholar 

  39. Lei W, Yu Z, Yi-Gang J (2013) Curr Org Chem 17:1288

    Article  CAS  Google Scholar 

  40. Zaera F (2013) Chem Soc Rev 42:2746

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Deraedt C, Ruiz J, Astruc D (2015) Acc Chem Res 48:1871

    Article  CAS  PubMed  Google Scholar 

  42. Lim H, Ju Y, Kim J (2016) Anal Chem 88:4751

    Article  CAS  PubMed  Google Scholar 

  43. Hong J, Djernes KE, Lee I, Hooley RJ, Zaera F (2013) ACS Catal 3:2154

    Article  CAS  Google Scholar 

  44. Chu W, LeBlanc RJ, Williams CT, Kubota J, Zaera F (2003) J Phys Chem B 107:14365

    Article  CAS  Google Scholar 

  45. Liu D, Gao J, Murphy CJ, Williams CT (2004) J Phys Chem B 108:12911

    Article  CAS  Google Scholar 

  46. Stimson MM, Reuter MA (1946) J Am Chem Soc 68:1192

    Article  CAS  PubMed  Google Scholar 

  47. Albiter MA, Zaera F (2010) Langmuir 26:16204

    Article  CAS  PubMed  Google Scholar 

  48. Albiter MA, Crooks RM, Zaera F (2010) J Phys Chem Lett 1:38

    Article  CAS  Google Scholar 

  49. Maiti PK, Çaǧın T, Lin S-T, Goddard WA (2005) Macromolecules 38:979

    Article  CAS  Google Scholar 

  50. Wehrli JT, Baiker A, Monti DM, Blaser HU, Jalett HP (1989) J Mol Catal 57:245

    Article  CAS  Google Scholar 

  51. Meheux PA, Ibbotson A, Wells PB (1991) J Catal 128:387

    Article  CAS  Google Scholar 

  52. Gamez A, Köhler J, Bradley J (1998) Catal Lett 55:73

    Article  CAS  Google Scholar 

  53. Ma Z, Zaera F (2005) J Phys Chem B 109:406

    Article  CAS  PubMed  Google Scholar 

  54. LeBlond C, Wang J, Andrews AT, Sun Y-K (2000) Top Catal 13:169

    Article  CAS  Google Scholar 

  55. Kubota J, Zaera F (2001) J Am Chem Soc 123:11115

    Article  CAS  PubMed  Google Scholar 

  56. Deutsch DS, Lafaye G, Liu D, Chandler B, Williams CT, Amiridis MD (2004) Catal Lett 97:139

    Article  CAS  Google Scholar 

  57. Niu Y, Yeung LK, Crooks RM (2001) J Am Chem Soc 123:6840

    Article  CAS  Google Scholar 

  58. Hiemstra H, Wynberg H (1981) J Am Chem Soc 103:417

    Article  CAS  Google Scholar 

  59. Tian S-K, Chen Y, Hang J, Tang L, McDaid P, Deng L (2004) Acc Chem Res 37:621

    Article  CAS  PubMed  Google Scholar 

  60. Vögtle F, Gestermann S, Hesse R, Schwierz H, Windisch B (2000) Prog Polym Sci 25:987

    Article  Google Scholar 

  61. Tekade RK, Kumar PV, Jain NK (2009) Chem Rev 109:49

    Article  CAS  PubMed  Google Scholar 

  62. Astruc D, Boisselier E, Ornelas C (2010) Chem Rev 110:1857

    Article  CAS  PubMed  Google Scholar 

  63. Mintzer MA, Grinstaff MW (2011) Chem Soc Rev 40:173

    Article  CAS  PubMed  Google Scholar 

  64. Kannan RM, Nance E, Kannan S, Tomalia DA (2014) J Intern Med 276:579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial assistance for this project has been provided by grants from the U.S. National Science Foundation and the U. S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Z., Zaera, F. Synthesis of Chiral Dendrimer-Encapsulated Nanoparticle (DEN) Catalysts. Top Catal 61, 902–914 (2018). https://doi.org/10.1007/s11244-018-0955-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0955-9

Keywords

Navigation