Skip to main content
Log in

Metal–CdSe Double Shell Hollow Nanocubes via Sequential Nanoscale Reactions and Their Photocatalytic Hydrogen Evolution

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A rational combination of nanoscale reactions can offer complex nanostructures with multiple components. In the present study, a general synthetic protocol was developed to generate metal–CdSe double shell hollow nanocubes. Three well-known nanoscale reactions, Galvanic replacement, chalcogenization, and cationic exchange, were sequentially applied to the original Ag nanocubes, yielding PtAg, Pt–Ag2Se, and Pt–CdSe hollow nanocubes, respectively. The final structure was composed of two distinct layers of Pt and CdSe domains. Thin and continuous Pt inner layers were formed at the stage of selenization due to the nanoscale Kirkendall effect. With the variation of the metals (Pt, Au, and Pd) and metal selenides (Ag2Se, CdSe), six different metal–semiconductor hybrids were produced with an identical morphology of the double shell hollow nanocubes. Thicknesses of metal and CdSe layers were also regulated by controlling amounts of metal contents at the Galvanic replacement step. The resulting Pt–CdSe double shell hollow nanocubes effectively catalyzed photochemical hydrogen evolution reactions with long term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) J Am Chem Soc 124:2312–2317

    Article  CAS  PubMed  Google Scholar 

  2. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  3. Yacamán MJ, Ascencio JA, Liu HB, Gardea-Torresdey JJ (2001) Vac Sci Technol B 19:1091–1103

    Article  CAS  Google Scholar 

  4. Xia X, Wang Y, Ruditskiy A, Xia Y (2013) Adv Mater 25:6313–6333

    Article  CAS  PubMed  Google Scholar 

  5. Oh M, Yu T, Yu S-H, Lim B, Ko K-T, Willinger M-G, Seo D-H, Kim BH, Cho MG, Park J-H, Kang K, Sung Y-E, Pinna N, Hyeon T (2013) Science 340:964–968

    Article  CAS  PubMed  Google Scholar 

  6. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714

    Article  CAS  PubMed  Google Scholar 

  7. Yin Y, Wang W, Dahl M (2013) Chem Mater 25:1179–1189

    Article  CAS  Google Scholar 

  8. Son DH, Hughes SM, Yin Y, Alivisatos AP (2004) Science 306:1009–1012

    Article  CAS  PubMed  Google Scholar 

  9. Camargo PHC, Lee YH, Jeong U, Zou Z, Xia Y (2007) Langmuir 23:2985–2992

    Article  CAS  PubMed  Google Scholar 

  10. Costi R, Saunders AE, Banin U (2010) Angew Chem Int Ed 49:4878–4897

    Article  CAS  Google Scholar 

  11. González E, Arbiol J, Puntes VF (2011) Science 334:1377–1380

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Tang Y, Lee K, Ouyang M (2010) Science 327:1634–1638

    Article  CAS  PubMed  Google Scholar 

  13. Lee S-U, Hong JW, Choi S-I, Han SW (2014) J Am Chem Soc 6:5221–5224

    Article  CAS  Google Scholar 

  14. Chen X, Shen S, Guo L, Mao SS (2010) Chem Rev 110:6503–6570

    Article  CAS  PubMed  Google Scholar 

  15. Zhu J, Zäch M (2009) Curr Opin Colloid Interface Sci 14:260–269

    Article  CAS  Google Scholar 

  16. Bang JU, Lee SJ, Jang JS, Choi W, Song H (2012) J Phys Chem Lett 3:3781–3785

    Article  CAS  PubMed  Google Scholar 

  17. Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrović A, Volbers D, Wyrwich R, Döblinger M, Susha AS, Rogach AL, Jäckel F, Stolarczyk JK, Feldmann J (2014) Nat Mater 13:1013–1018

    Article  CAS  PubMed  Google Scholar 

  18. Jitputti J, Pavasupree S, Suzuki Y, Yoshikawa S (2007) J Solid State Chem 180:1743–1749

    Article  CAS  Google Scholar 

  19. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Acc Chem Res 41:1587–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xia Y, Li W, Cobley CM, Chen JY, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Acc Chem Res 44:914–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahmoud MA, El-Sayed MA (2012) Langmuir 28:4051–4059

    Article  CAS  PubMed  Google Scholar 

  22. Mahmoud MA, El-Sayed MA (2011) Nano Lett 11:946–953

    Article  CAS  PubMed  Google Scholar 

  23. Seo D, Park G, Song H (2012) J Am Chem Soc 134:1221–1227

    Article  CAS  PubMed  Google Scholar 

  24. Amirav L, Alivisatos AP (2010) J Phys Chem Lett 1:1051–1054

    Article  CAS  Google Scholar 

  25. Huang L, Wang X, Yang J, Liu G, Han J, Li C (2013) J Phys Chem C 117:11584–11591

    Article  CAS  Google Scholar 

  26. Choi W, Park G, Bae K-L, Choi JY, Nam KM, Song H (2016) J Mater Chem A 4:13414–13418

    Article  CAS  Google Scholar 

  27. Zhang Q, Li W, Wen L-P, Chen J, Xia Y (2010) Chem Eur J 16:10234–10239

    Article  CAS  PubMed  Google Scholar 

  28. Sun Y, Xia Y (2004) J Am Chem Soc 126:3892–3901

    Article  CAS  PubMed  Google Scholar 

  29. Lu X, Tuan H-Y, Chen J, Li Z-Y, Korgel BA, Xia Y (2007) J Am Chem Soc 129:1733–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan HJ, Gösele U, Zacharias M (2007) Small 3:1660–1671

    Article  CAS  PubMed  Google Scholar 

  31. Tang Y, Ouyang M (2007) Nat Mater 6:754–759

    Article  CAS  PubMed  Google Scholar 

  32. Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH (2014) Nat Commun 5:4775–4782

    Article  CAS  PubMed  Google Scholar 

  33. Wu Q, Xiong S, Shen P, Zhao S, Li Y, Su D, Orlov A (2015) Catal Sci Technol 5:2059–2064

    Article  CAS  Google Scholar 

  34. Shen P, Zhao S, Su D, Li Y, Orlov A (2012) Appl Catal B 126:153–160

    Article  CAS  Google Scholar 

  35. Robel I, Subramanian V, Kuno M, Kamat PV (2006) J Am Chem Soc 128:2385–2393

    Article  CAS  PubMed  Google Scholar 

  36. Wark SE, Hsia C-H, Son DH (2008) J Am Chem Soc 130:9550–9555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Saudi Aramco-KAIST CO2 management center. This work was also supported by the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIP) (NRF-2015R1A2A2A01004196 and NRF-2017R1D1A1 B03031892).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Won Seok Seo, Ki Min Nam or Hyunjoon Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3862 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Park, G., Bae, KL. et al. Metal–CdSe Double Shell Hollow Nanocubes via Sequential Nanoscale Reactions and Their Photocatalytic Hydrogen Evolution. Top Catal 61, 965–976 (2018). https://doi.org/10.1007/s11244-018-0951-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0951-0

Keywords

Navigation