Skip to main content

Advertisement

Log in

Hydrogen evolution in the photocatalytic reaction between methane and water in the presence of CO2 on titanate and titania supported Rh and Au catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The photocatalytic transformation of methane-water mixture over Rh and Au catalysts supported on protonated (H-form) titanate nanotube (TNT) was investigated. The role of the catalyst structure was analyzed using titania reference support. Furthermore the effect of carbon-dioxide addition was also investigated. The catalysts were characterized by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic tests were performed with a mercury-arc UV source illuminating a continuous flow quartz reactor which was attached to a mass spectrometer. The surface of the catalysts was analyzed by diffuse reflectance infrared spectroscopy during the photoreactions. The changes of the catalysts due to photocatalytic usage were investigated by XPS and temperature programmed reduction methods as well. Most of the methane was generally transformed to hydrogen and ethane, and a small amount of methanol was also formed. The carbon dioxide addition enhanced the rate of the photocatalytic transformation of methane on Rh/TNT with increasing the lifetime of the electron–hole pairs. Bigger gold particles with mainly plasmonic character were more active in the reactions due to the photo induced activation of the adsorbed water. Surface carbon deposits were identified on the catalysts after the photoreactions. More oxidized carbon formed on the Au-containing catalysts than on the ones with Rh.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103:15729–15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lior N (2008) Energy 33:842–857

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Zhang L, Cheng B, Su Y (2007) J Phys Chem C 111:10582–10589

    Article  CAS  Google Scholar 

  5. Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A 130:35–47

    Article  CAS  Google Scholar 

  6. Yu J, Zhang J (2010) Dalton Trans 39:5860–5867

    Article  CAS  PubMed  Google Scholar 

  7. Kumar SG, Devi LG (2011) J Phys Chem A 115:13211–13241

    Article  CAS  PubMed  Google Scholar 

  8. Kukovecz Á, Kordás K, Kiss J, Kónya Z (2016) Surf Sci Rep 71:473–546

    Article  CAS  Google Scholar 

  9. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  10. Dosado AG, Chen W-T, Chan A, Sun-Waterhouse D, Waterhouse GIN (2015) J Catal 330:238–254

    Article  CAS  Google Scholar 

  11. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098–2106

    Article  CAS  Google Scholar 

  12. Armaroli N, Balzani V (2011) ChemSusChem 4:21–36

    Article  CAS  PubMed  Google Scholar 

  13. Tahir M, Amin NS (2013) Renew Sustain Energy Rev 25:560–579

    Article  CAS  Google Scholar 

  14. Edwards JH, Maitra AM (1995) Fuel Process Technol 42:269–289

    Article  CAS  Google Scholar 

  15. Bradford MCJ, Vannice MA (1999) Catal Rev 41:1–42

    Article  CAS  Google Scholar 

  16. Erdőhelyi A, Cserényi J, Solymosi F (1993) J Catal 141:287–299

    Article  Google Scholar 

  17. Zhang Z, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) J Catal 158:51–63

    Article  CAS  Google Scholar 

  18. Sarusi I, Fodor K, Baán K, Oszkó A, Pótári G, Erdőhelyi A (2011) Catal Today 171:132–139

    Article  CAS  Google Scholar 

  19. Papadopoulou C, Matrials H, Verykios XE (2012) In: Guczi L, Erdőhelyi A (eds) Catalysis for alternative energy generation, 1st edn. Springer, New York

    Google Scholar 

  20. Ferencz Z, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdőhelyi A (2014) Catal Today 228:123–130

    Article  CAS  Google Scholar 

  21. Yuliati L, Itoh H, Yoshida H (2008) Chem Phys Lett 452:178–182

    Article  CAS  Google Scholar 

  22. Narayanan H, Viswanathan B, Yesodharan S (2016) Curr Catal 5:79–107

    Article  CAS  Google Scholar 

  23. Henderson MA (2012) Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  24. Ola O, Maroto-Valer MM (2015) J Photochem Photobiol C 24:16–42

    Article  CAS  Google Scholar 

  25. Lan Y, Lu Y, Ren Z (2013) Nano Energy 2:1031–1045

    Article  CAS  Google Scholar 

  26. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52:7372–7408

    Article  CAS  Google Scholar 

  27. Izumi Y (2013) Coord Chem Rev 257:171–186

    Article  CAS  Google Scholar 

  28. Halasi G, Gazsi A, Bánsági T, Solymosi F (2015) Appl Catal A 506:85–90

    Article  CAS  Google Scholar 

  29. Tahir M, Amin NS (2013) Energy Convers Manag 76:194–214

    Article  CAS  Google Scholar 

  30. Kasuga T, Hiramatsu M, Hoson A, Seiko T, Niihara K (1998) Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  31. Lee K, Mazare A, Schmuki P (2014) Chem Rev 114:9385–9454

    Article  PubMed  Google Scholar 

  32. Kukovecz Á, Pótári G, Oszkó A, Kónya Z, Erdőhelyi A, Kiss J (2011) Surf Sci 605:1048–1055

    Article  CAS  Google Scholar 

  33. Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  34. Sun X, Li Y (2003) Chem—Eur J 9:2229–2238

    Article  CAS  PubMed  Google Scholar 

  35. Tsubota S, Haruta M, Kobayashi T, Ueda A, Nakahara A (1991) In: Poncelet G et al (eds) Preparation of catalysts V, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  36. Cesano F, Bertarione S, Uddin MJ, Agostini G, Scarano D, Zeccina A (2010) J Phys Chem C 114:169–178

    Article  CAS  Google Scholar 

  37. Madarász D, Pótári G, Sápi A, László B, Csudai C, Oszkó A, Kukovecz Á, Erdőhelyi A, Kónya Z, Kiss J (2013) Phys Chem Chem Phys 15:15917–15925

    Article  CAS  PubMed  Google Scholar 

  38. Pótári G, Madarász D, Nagy L, László B, Sápi A, Oszkó A, Kukovecz Á, Erdőhelyi A, Kónya Z, Kiss J (2013) Langmuir 29:3061–3072

    Article  CAS  PubMed  Google Scholar 

  39. Pusztai P, Puskás R, Varga E, Erdőhelyi A, Kukovecz Á, Kónya Z, Kiss J (2014) Phys Chem Chem Phys 16:26786–26797

    Article  CAS  PubMed  Google Scholar 

  40. Haspel H, Laufer N, Bugris V, Ambrus R, Szabó-Révész P, Kukovecz Á (2012) J Phys Chem C 16:18999–19009

    Article  CAS  Google Scholar 

  41. Kordás K, Mohl M, Kónya Z, Kukovecz Á (2015) Transl Mater Res 2:015003

    Article  CAS  Google Scholar 

  42. Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) RSC Adv 5:79479–79510

    Article  CAS  Google Scholar 

  43. Horváth E, Kukovecz Á, Kónya Z, Kiricsi I (2007) Chem Mater 19:927–931

    Article  CAS  Google Scholar 

  44. Bavykin DV, Carravetta M, Kulak AN, Walsh FC (2010) Chem Mat 22:2458–2465

    Article  CAS  Google Scholar 

  45. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  46. Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L (2012) Chem Eng J 180:151–158

    Article  CAS  Google Scholar 

  47. Parayil SK, Razzaq A, Park S-M, Kim HR, Grimes CA, In S-I (2015) Appl Catal A 498:205–213

    Article  CAS  Google Scholar 

  48. Qamar M, Kim SJ, Ganguli AK (2009) Nanotechnology 20:455703

    Article  CAS  PubMed  Google Scholar 

  49. Peng S, Zeng X, Li Y (2015) Int J Hydrog Energy 40:6038–6049

    Article  CAS  Google Scholar 

  50. Zhao X, Cai Z, Wang T, O’Reilly SE, Liu W, Zhao D (2016) Appl Catal B 187:134–143

    Article  CAS  Google Scholar 

  51. Avouris P, Person BNJ (1984) J Phys Chem 88:837–848

    Article  CAS  Google Scholar 

  52. Ying ZC, Ho W (1991) J Chem Phys 94:5701

    Article  CAS  Google Scholar 

  53. Zhou X-L, Zhu X-Y, White JM (1991) Surf Sci Rep 13:73–220

    Article  CAS  Google Scholar 

  54. Kiss J, Lennon D, Jo SK, White JM (1991) J Phys Chem 95:8054–8059

    Article  CAS  Google Scholar 

  55. Jo SK, Zhu X-Y, Lennon D, White JM (1991) Surf Sci 241:231–243

    Article  CAS  Google Scholar 

  56. Wu M-C et al (2011) ACS Nano 5:5025–5030

    Article  CAS  PubMed  Google Scholar 

  57. Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943–4950

    Article  CAS  PubMed  Google Scholar 

  58. Jacob M, Levanon H, Kamat PV (2003) Nano Lett 3:353–358

    Article  CAS  Google Scholar 

  59. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  60. Bowker M, Morton C, Bahruj H, Greves J, Jones W, Davis PR, Brookes C, Wells PP, Dimitratos N (2014) J Catal 310:10–15

    Article  CAS  Google Scholar 

  61. László B, Baán K, Varga E, Oszkó A, Erdőhelyi A, Kónya Z, Kiss J (2016) Appl Catal B 199:473–483

    Article  CAS  Google Scholar 

  62. Ioannides T, Verykios XE (1996) J Catal 161:560–569

    Article  CAS  Google Scholar 

  63. Zhang N, Liu S, Fu X, Xu Y-J (2011) J Phys Chem C 115:9136–9145

    Article  CAS  Google Scholar 

  64. Kowalska E, Mahaney OOP, Abe R, Ohtani B (2010) Phys Chem Chem Phys 12:2344–2355

    Article  CAS  PubMed  Google Scholar 

  65. Park H, Park Y, Kim W, Choi W (2013) J Photochem Photobiol C 15:1–29

    Article  CAS  Google Scholar 

  66. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Chem Rev 111:3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kiss J, Kis A, Solymosi F (2000) Surf Sci 454:273–279

    Article  Google Scholar 

  68. Kecskés T, Barthos R, Raskó J, Kiss J (2003) Vacuum 71:107–111

    Article  CAS  Google Scholar 

  69. Dimitrijevic NM, Vijayan BK, Pouektov OG, Rajh T, Gray KA, He H, Zapol P (2011) J Am Chem Soc 133:3964–3971

    Article  CAS  PubMed  Google Scholar 

  70. Jovic V, Al-Azri ZHN, Chen W-T, Sun-Waterhouse D, Idriss H, Waterhouse GIN (2013) Top Catal 56:1139–1151

    Article  CAS  Google Scholar 

  71. Ying L, Gao X, Zhu H, Zheng Z, Yan T, Wu F, Ringer SP, Song D (2005) Adv Funct Mater 15:1310–1318

    Article  CAS  Google Scholar 

  72. Hernandez-Alonso MD, Gracia-Rodriguez S, Sánchez B, Coronado JM (2011) Nanoscale 3:2233–2240

    Article  CAS  PubMed  Google Scholar 

  73. Bavykin DV, Lapkin AA, Plucinski PK, Torrente-Murciano L, Friedrich JM, Walsh FC (2006) Top Catal 39:151–160

    Article  CAS  Google Scholar 

  74. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) J Mater Chem A 3:2485–2534

    Article  CAS  Google Scholar 

  75. Hisatomi T, Takanabe K, Domen K (2015) Catal Lett 145:95–108

    Article  CAS  Google Scholar 

  76. Kisch H (2010) Angew Chem Int Ed 49:9588–9589

    Article  CAS  Google Scholar 

  77. Serpone N (1997) J Photochem Photobiol A 104:1–12

    Article  CAS  Google Scholar 

  78. Henry CR (1998) Surf Sci Rep 31:231–325

    Article  CAS  Google Scholar 

  79. Sasahara A, Pang CL, Onishi H (2006) J Phys Chem B 110:17584–17588

    Article  CAS  PubMed  Google Scholar 

  80. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  81. Chandrasekharan N, Kamat PV (2000) J Phys Chem B 104:10851–10857

    Article  CAS  Google Scholar 

  82. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) J Am Chem Soc 130:5883–5885

    Article  CAS  PubMed  Google Scholar 

  83. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Chem Eng J 170:471–481

    Article  CAS  Google Scholar 

  84. Collins SE, Baltanás ME, Bonivardi AL (2004) J Catal 226:410–421

    Article  CAS  Google Scholar 

  85. Dobson KD, McQuillan AJ (1999) Spectrochim Acta Part A 55:1395–1405

    Article  Google Scholar 

  86. Tóth M, Varga E, Oszkó A, Baán K, Kiss J, Erdőhelyi A (2016) J Mol Catal A 411:377–387

    Article  CAS  Google Scholar 

  87. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  88. Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) J Alloys Compd 501:77–84

    Article  CAS  Google Scholar 

  89. NIST X-ray Photoelectron Spectroscopy Database (2012) U.S. Secretary of Commerce. https://www.srdata.nist.gov/xps/. Accessed 13 June 2017

  90. Lesiak B, Stobinski L, Malolepszy A, Mazurkiewicz M, Kövér L, Tóth J (2014) J Electron Spectrosc Relat Phenom 193:92–99

    Article  CAS  Google Scholar 

  91. Chandrasekharan N, Kamat PM (2000) J Phys Chem B 104:10851–10867

    Article  CAS  Google Scholar 

  92. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) Nano Lett 9:731–737

    Article  CAS  PubMed  Google Scholar 

  93. Baltrusaitis J, Schuttlefield J, Zitler E, Grassian VH (2011) Chem Eng J 170:471–481

    Article  CAS  Google Scholar 

  94. Wu Z, Jiang D, Mann AKP, Mullins DR, Qiao Z, Allard LF, Zeng C, Jin R, Overbury SH (2014) J Am Chem Soc 136:6111–6122

    Article  CAS  PubMed  Google Scholar 

  95. Turner VB, Golovko OPH, Yaughan P, Abdulkin A, Brenguer-Murcia MS, Tikhov BFG, Lambert RM (2008) Nature 454:981–983

    Article  CAS  PubMed  Google Scholar 

  96. Yang MX, Jo SK, Paul A, Avila L, Bent BE, Nishikida K (1995) Surf Sci 325:102–120

    Article  CAS  Google Scholar 

  97. Burchan LJ, Wachs IE (1999) Catal Today 49:467–484

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Erika Varga for the XPS measurements, Zsuzsa Ferencz for the TPR measurements, László Nagy for the synthesis of the titanate nanotubes and Tamás Varga for the HRTEM measurements. Financial support of this work by the National Research Development and Innovation Office through grants GINOP-2.3.2-15-2016-00013 and NKFIH OTKA K120115 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to János Kiss or Zoltán Kónya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

László, B., Baán, K., Oszkó, A. et al. Hydrogen evolution in the photocatalytic reaction between methane and water in the presence of CO2 on titanate and titania supported Rh and Au catalysts. Top Catal 61, 875–888 (2018). https://doi.org/10.1007/s11244-018-0936-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0936-z

Keywords

Navigation