Key Structural Transformations and Kinetics of Pt Nanoparticles in PEFC Pt/C Electrocatalysts by a Simultaneous Operando Time-Resolved QXAFS–XRD Technique
Abstract
This account article treats with the key structural transformations and kinetics of Pt nanoparticles in Pt/C cathode catalysts under transient voltage operations (0.4 VRHE→1.4 VRHE→0.4 VRHE) by simultaneous operando time-resolved QXAFS–XRD measurements, summarizing and analyzing our previous kinetic data in more detail and discussing on the key reaction steps and rate constants for the performance and durability of polymer electrolyte fuel cells (PEFC). The time-resolved QXAFS–XRD measurements were conducted at each acquisition time of 20 ms, while measuring the current/charge of the PEFC. The rate constants for the transient responses of Pt valence, CN(Pt–O) (CN: coordination number), CN(Pt–Pt), and Pt metallic-phase core size under the transient voltage operations were determined by the combined time-resolved QXAFS‒XRD technique. The relationship of the structural kinetics with the performance and durability of the PEFC Pt/C was also documented as key issues for the development of next-generation PEFCs. The present account emphasizes the time-resolved QXAFS and XRD techniques to be a powerful technique to analyze directly the structural and electronic change of metal nanoparticles inside PEFC under the operating conditions.
Graphical Abstract
Keywords
Simultaneous operando time-resolved QXAFS–XRD measurements Pt/C cathode catalyst Polymer electrolyte fuel cell Mechanism and structural kinetics Performance and durabilityNotes
Acknowledgements
This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) of the Ministry of Economy, Trade, and Industry (METI), Japan. XAFS measurements were conducted at BL36XU beamline in SPring-8 (No. 2013A7802, 2013B7806, 2014A7801, 2014A7805, 2014B7801, 2014B7803, 2014B7805, 2015A7803, 2015A7804, 2015A7840, 2015B7801, 2015B7803, 2015B7805, 2015B7840, 2016A7801, 2016A7802, 2016A7803, 2016A7840, 2016B7801, 2016B7803, 2016B7806, and 2016B7840, 2017A7801, 2017A7803, 2017A7806, 2017A7841).
References
- 1.Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J-Y, Su D, Huang X (2016) Science 354:1410–1414CrossRefGoogle Scholar
- 2.Wang H, Xu S, Tsai C, Li Y, Liu C, Zhao J, Liu Y, Yuan H (2016) Science 354:1031–1036CrossRefGoogle Scholar
- 3.Stephens IE, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorf I (2012) Energy Environ Sci 5:6744–6762CrossRefGoogle Scholar
- 4.Debe K (2012) Nature 486:43 – 51CrossRefGoogle Scholar
- 5.Zhang L, Roling LT, Wang X, Vara MV, Chi M, Liu J, Choi S, Park J, Herron JA, Xie Z (2015) Science 349:412–416CrossRefGoogle Scholar
- 6.Oezaslan M, Hasché F, Strasser P (2013) J Phys Chem Lett 4:3273 – 3291CrossRefGoogle Scholar
- 7.Nagasawa K, Takao S, Nagamatsu S, Samjeské G, Sekizawa O, Kaneko T, Higashi K, Yamamoto T, Uruga T, Iwasawa Y (2015) J Am Chem Soc 137:12856–12864CrossRefGoogle Scholar
- 8.Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Huolin W, Xin L, Snyder JD, Li D, Herron JA (2014) Science 343:1339–1343CrossRefGoogle Scholar
- 9.Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D (2007) Chem Rev 107:3904–3951CrossRefGoogle Scholar
- 10.Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marcovic NM (2007) Science 315:493 – 497CrossRefGoogle Scholar
- 11.Tada M, Uruga T, Iwasawa Y (2015) Catal Lett 145:58–70CrossRefGoogle Scholar
- 12.Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) J Electrochem Soc 142:1409–1422CrossRefGoogle Scholar
- 13.Adzic RR, Wang JX, Ocko BM, McBreen J (2010) EXAFS, XANES, SXS. Handbook of fuel cells. Wiley, New York (Online)Google Scholar
- 14.Nagamatsu S, Takao S, Samjeské G, Nagasawa K, Sekizawa O, Kaneko T, Higashi K, Uruga T, Gayen S, Velaga S, Milan K, Iwasawa Y (2016) Surf Sci 648:100–113CrossRefGoogle Scholar
- 15.Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S, Inada Y, Nomura M, Iwasawa Y (2007) Angew Chem Int Ed 46:4310CrossRefGoogle Scholar
- 16.Ishiguro N, Kityakarn S, Sekizawa O, Uruga T, Sasabe T, Nagasawa K, Yokoyama T, Tada M (2014) J Phys Chem C 118:15874–15883CrossRefGoogle Scholar
- 17.Ishiguro N, Saida T, Uruga T, Sekizawa O, Nagasawa K, Nitta K, Yamamoto T, Ohkoshi S, Yokoyama T, Tada M (2013) Phys Chem Chem Phys 15:18827–18834CrossRefGoogle Scholar
- 18.Imai H, Izumi K, Matsumoto M, Kubo Y, Kato K, Imai Y (2009) J Am Chem Soc 131:6293–6300CrossRefGoogle Scholar
- 19.Nam K-W, Bak S-M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K-Y, Yang X-Q (2013) Adv Funct Mater 23:1047–1063CrossRefGoogle Scholar
- 20.Frenkel AI, Wang Q, Marinkovic N, Chen JG, Barrio L, Si R, Cámara AL, Estrella AM, Rodriguez JA, Hanson JC (2011) J Phys Chem C 115:17884–17890CrossRefGoogle Scholar
- 21.Sekizawa O, Uruga T, Higashi K, Kaneko T, Yoshida Y, Sakata T, Iwasawa Y (2017) ACS Sustain Chem Eng 5:3631 – 3636CrossRefGoogle Scholar
- 22.Kaneko T, Samjeské G, Nagamatsu S, Higashi K, Sekizawa O, Takao S, Yamamoto T, Zhao X, Sakata T, Uruga T, Iwasawa Y (2016) J Phys Chem C 120:24250–24264CrossRefGoogle Scholar
- 23.Nagasawa K, Takao S, Higashi K, Nagamatsu S, Samjeské G, Imaizumi Y, Sekizawa O, Yamamoto T, Uruga T, Iwasawa Y (2014) Phys Chem Chem Phys 16:10075–10087CrossRefGoogle Scholar
- 24.Sekizawa O, Uruga T, Tada M, Nitta K, Kato K, Tanida H, Takeshita K, Takahashi S, Sano M, Aoyagi H, Watanabe A, Nariyama N, Ohashi H, Yumoto H, Koyama T, Senba Y, Takeuchi T, Furukawa Y, Ohata T, Matsushita T, Ishizawa Y, Kudo T, Kimura H, Yamazaki H, Tanaka T, Bizen T, Seike T, Goto S, Ohno H, Takata M, Kitamura H, Ishikawa T, Yokoyama T, Iwasawa Y (2013) J Phys Conf Ser 430:012020–012021CrossRefGoogle Scholar
- 25.Iwasawa Y (1996) X-ray absorption fine structure for catalysts and surfaces. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
- 26.Iwasawa Y, Asakura K, Tada M (2016) XAFS techniques for catalysts, nanomaterials and surfaces. Springer, New YorkGoogle Scholar
- 27.Newville M, Ravel B, Haskel D, Rehr JJ, Stern EA, Yacoby Y (1995) Physica B 208–209:154–156CrossRefGoogle Scholar
- 28.Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
- 29.Rehr JJ, Albers RC (2000) Rev Mod Phys 72:621–654CrossRefGoogle Scholar
- 30.Hirunsit P, Balbuena PB (2009) Surf Sci 603:3239–3248CrossRefGoogle Scholar
- 31.Matanovic I, Garzon FH, Henson NJ (2011) J Phys Chem C 115:10640–10650CrossRefGoogle Scholar
- 32.Takao S, Sekizawa O, Nagamatsu S, Kaneko T, Yamamoto T, Samjeské G, Higashi K, Nagasawa K, Tsuji T, Suzuki M, Kawamura N, Mizumaki M, Uruga T, Iwasawa Y (2014) Angew Chem Int Ed 53:14110CrossRefGoogle Scholar
- 33.Takao S, Sekizawa O, Samjeské G, Nagamatsu S, Kaneko T, Yamamoto T, Higashi K, Nagasawa K, Uruga T, Iwasawa Y (2015) J Phys Chem Lett 6:2121CrossRefGoogle Scholar
- 34.Takao S, Sekizawa O, Samjeské G, Namagatsu S, Kaneko T, Higashi K, Yamamoto T, Nagasawa K, Zhao X, Uruga T, Iwasawa Y (2016) Top Catal 59:1722–1731CrossRefGoogle Scholar