Consorted Vinylene Mechanism for Cobalt Fischer–Tropsch Synthesis Encompassing Water or Hydroxyl Assisted CO-Activation

Original Paper
  • 18 Downloads

Abstract

A mechanistic model for Fischer–Tropsch synthesis is proposed. The model contains four key steps. The first step is hydrogen assisted CO activation to formyl. This is followed by hydrogen transfer from either water or hydroxyl to a hydroxycarbene intermediate to generate CH* surface species on cobalt as chain building blocks. Further, chain propagation is by adding methylidyne (CH*) to an alkylidene (CHCH2R) chain to create a vinylene (CHCHR) chain end unit. Last, hydrogenation finalizes the chain-building step or terminates the chain depending on whether hydrogen is added to the β- or α-carbon atom, respectively. The result is that the main product is α-olefins. Chain growth probability is independent of hydrogen partial pressure and depends solely on the surface coverage of CH* monomers. Short-chain (Me) branching and variation in chain growth with chain length are also rationalized. Derived kinetic equations depend on details of the mechanism, but generally encompass water in the expressions and can account for both positive and negative water responses. The expression for the Anderson–Schulz–Flory (ASF) α is dependent on CO, and can contains the water vapor pressure as well, in a way consistent with higher α when more CO and water are present for production of CH* chain growth monomers.

Keywords

Fischer–Tropsch Cobalt Mechanism Water CO-activation Kinetics 

Notes

Acknowledgements

An important part of this paper is inspired by the presentation in Tromsø by Heiko Oosterbeek at the 11th Natural Gas Conversion Symposium in June 2016.

References

  1. 1.
    Rytter E, Holmen A (2015) Catalysts 5(2):478–499CrossRefGoogle Scholar
  2. 2.
    Rytter E, Tsakoumis NE, Holmen A (2016) Catal Today 261:3–16CrossRefGoogle Scholar
  3. 3.
    Rytter E, Holmen A (2016) Catal Today 275:11–19CrossRefGoogle Scholar
  4. 4.
    Rytter E, Holmen A (2017) ACS Catal 7(8):5321–5328CrossRefGoogle Scholar
  5. 5.
    Blekkan EA, Borg Ø, Holmen A (2007) Catal 20:13Google Scholar
  6. 6.
    Storsæter S, Borg Ø, Blekkan EA, Tøtdal B, Holmen A (2005) Catal Today 100:343CrossRefGoogle Scholar
  7. 7.
    Borg Ø, Storsæter S, Eri S, Wigum H, Rytter E, Holmen A (2006) Catal Lett 107:95CrossRefGoogle Scholar
  8. 8.
    Lögdberg S, Boutonnet M, Walmsley JC, Järås S, Holmen A, Blekkan EA (2011) Appl Catal A 393:109CrossRefGoogle Scholar
  9. 9.
    Enger BC, Fossan Å-L, Borg Ø, Rytter E, Holmen A (2011) J Catal 284:9CrossRefGoogle Scholar
  10. 10.
    Anderson RB, Friedel RA, Storch HH (1951) J Chem Phys 19:313CrossRefGoogle Scholar
  11. 11.
    Krishnamoorthy S, Tu M, Ojeda MP, Pinna D, Iglesia E (2002) J Catal 211:422–433CrossRefGoogle Scholar
  12. 12.
    Bertole CJ, Mims CA, Kiss G (2004) J Catal 221:191CrossRefGoogle Scholar
  13. 13.
    Hibbits DD, Loveless BT, Neurock M, Iglesia E (2013) Angew Chem Int Ed 20:12273–12278CrossRefGoogle Scholar
  14. 14.
    Dalai AK, Das TK, Chaudhari KV, Jacobs G, Davis BH (2005) Appl Catal A 289:135CrossRefGoogle Scholar
  15. 15.
    Schanke D, Lian P, Eri S, Rytter E, Sannæs BH, Kinnari KJ (2001) Stud Surf Sci Catal 136:185CrossRefGoogle Scholar
  16. 16.
    Lillebø AH (2014) Conversion of Biomass Derived Synthesis Gas into Liquid Fuels via the Fischer–Tropsch Synthesis Process: Effect of Alkali and Alkaline Earth Metal Impurities and CO Conversion Levels on Cobalt Based Catalysts, Ph.D. thesis, NTNUGoogle Scholar
  17. 17.
    Rytter E, Eri S, Skagseth TH, Schanke D, Bergene E, Myrstad R, Lindvåg A (2007) Ind Eng Chem Res 46:9032CrossRefGoogle Scholar
  18. 18.
    Oosterbeek H, van Bavel AP (2016) Extended abstract 992, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, NorwayGoogle Scholar
  19. 19.
    Davis BH, Iglesia E, Technology Development for Iron and Cobalt Fischer–Tropsch Catalysts, Final Technical Report, Univ. Kentucky Research Foundation, 30 June 2002, pp. 1474–1572. http://www.fischer-tropsch.org/DOE/DOE_reports/40308/FC26-98FT40308-f/FC26-98FT40308-f_toc.htm
  20. 20.
    Yang J, Eiras SB, Myrstad R, Pfeifer P, Venvik HJ, Holmen A (2016) In: Davis BH, Occelli ML (eds) Fischer–Tropsch synthesis, catalysts, and catalysis. CRC Press, Boca Raton, Chemical Industries/142 Chap. 12, p 223CrossRefGoogle Scholar
  21. 21.
    Shi B, Davis BH (2005) Comput Des 106:129Google Scholar
  22. 22.
    Patzlaff J, Liu Y, Craffmann C, Gaube J (2002) Catal Today 71:381–394CrossRefGoogle Scholar
  23. 23.
    Borg Ø, Dietzel PDC, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, Eri S, Holmen A, Rytter E (2008) J Catal 259:161CrossRefGoogle Scholar
  24. 24.
    Borg Ø, Hammer N, Enger BC, Myrstad R, Lindvåg OA, Eri S, Skagseth TH, Rytter E (2011) J Catal 279:163CrossRefGoogle Scholar
  25. 25.
    van der Laan GP, Beenackers AACM. (1999) Catal Rev 41:255CrossRefGoogle Scholar
  26. 26.
    Ledesma C, Yang J, Chen D, Holmen A (2014) ACS Catal 4:4527–4547CrossRefGoogle Scholar
  27. 27.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn E, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956CrossRefGoogle Scholar
  28. 28.
    Rane SP, Borg Ø, Yang J, Rytter E, Holmen A (2010) Appl Catal A 388:160CrossRefGoogle Scholar
  29. 29.
    Enger BC, Frøseth V, Yang J, Rytter E, Holmen A (2013) J Catal 284:187CrossRefGoogle Scholar
  30. 30.
    Yang J, Qi Y, Zhu J, Zhu Y-A, Chen D, Holmen A (2013) J Catal 308:37–49CrossRefGoogle Scholar
  31. 31.
    Lögdberg S, Lualdi M, Järås S, Walmsley JC, Blekkan EA, Rytter E, Holmen A (2010) J Catal 274:84CrossRefGoogle Scholar
  32. 32.
    Lögdberg S, Yang J, Lualdi M, Walmsley JC, Järås S, Boutonnet M, Blekkan EA, Rytter E, Holmen A (2017) J Catal 56:515CrossRefGoogle Scholar
  33. 33.
    Bezemer GL (2016) Extended abstract 1088, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, NorwayGoogle Scholar
  34. 34.
    Schulz H, Claeys M (1999) Appl Catal A 186:71–90CrossRefGoogle Scholar
  35. 35.
    Keyvanloo K, Fischer MJ, Hecker WC, Lancee RJ, Jacobs G, Bartholomew CH (2015) J Catal 327:33–47CrossRefGoogle Scholar
  36. 36.
    Nandula A, Trinh QT, Saeys M, Alexandrova AN (2015) Angew Chem Int Ed 54:5312–5316CrossRefGoogle Scholar
  37. 37.
    Storsæter S, Chen D, Holmen A (2006) Surf Sci 600:2051–2063CrossRefGoogle Scholar
  38. 38.
    Ojeda M, Nabar R, Nilikar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287–297CrossRefGoogle Scholar
  39. 39.
    van Helden P, van den Berg JA, Ciobica IM (2012) Catal Sci Technol 2:491–494CrossRefGoogle Scholar
  40. 40.
    Keyvanloo K, Lanham SJ, Hecker WC (2016) Catal Today 270:9–18CrossRefGoogle Scholar
  41. 41.
    Gunasooriya GTKK, Banerjee A, Saeys M (2016) Extended abstract 1154, 11th Natural Gas Conversion Symposium, TromsøGoogle Scholar
  42. 42.
    Gunasooriya GTKK., van Bavel AP, Kuipers HPCE, Saeys M (2016) ACS Catal 6:3660–3664CrossRefGoogle Scholar
  43. 43.
    Strømsheim MD, Svenum IH, Borg A, Venvik HJ (2016) Extended abstract 1237, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, NorwayGoogle Scholar
  44. 44.
    Paredes-Nunez A, Lorito D, Schuurman Y, Guilhaume N, Meunier FC (2015) J Catal 329:229–236CrossRefGoogle Scholar
  45. 45.
    Paredes-Nunez A, Guilhaume N, Schuurman Y, Meunier FC (2016) Extended abstract 1102, 11th Natural Gas Conversion Symposium, 5-9 June, Tromsø, NorwayGoogle Scholar
  46. 46.
    Weststrate CJ, Ciobîcǎ IM, Saib AM, Moodley DJ, Niemantsverdriet JW (2014) Catal. Today 228:106–112CrossRefGoogle Scholar
  47. 47.
    Weststrate CJ, van Helden P, Niemantsverdriet JW (2016) Catal Today 275:100–110CrossRefGoogle Scholar
  48. 48.
    Huff GA Jr, Satterfield CN (1984) J Catal 85:370CrossRefGoogle Scholar
  49. 49.
    Iglesia E, Soled SL, Fiato RA (1992) J Catal 137:212CrossRefGoogle Scholar
  50. 50.
    Todic B, Ma W, Jacobs G, Davis BH, Bukur DB (2014) J Catal 311:325–338CrossRefGoogle Scholar
  51. 51.
    Withers HP Jr, Eliezer KF, Mitchel JW (1990) Ind Eng Chem Res 29:1807–1814CrossRefGoogle Scholar
  52. 52.
    van Steen E, Schulz H (1999) Appl Catal A 186:309–320CrossRefGoogle Scholar
  53. 53.
    Das TK, Conner WA, Li J, Jacobs G, Dry ME, Davis BH (2005) Energy Fuels 10:1430–1439CrossRefGoogle Scholar
  54. 54.
    Bhatelia T, Ma W, Jacobs G, Davis BH, Bukur DB (2011) Chem Eng Trans 25:707Google Scholar
  55. 55.
    Ma W, Jacobs G, Sparks DE, Spicer RL, Davis BH, Klettlinger JLS, Yen CH (2014) Catal Today 228:158CrossRefGoogle Scholar
  56. 56.
    Hillestad M (2015) Chem Prod Proc Model 10:147Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.SINTEF Materials and ChemistryTrondheimNorway

Personalised recommendations