Advertisement

Topics in Catalysis

, Volume 61, Issue 9–11, pp 810–832 | Cite as

Modeling of EPR Parameters for Cu(II): Application to the Selective Reduction of NOx Catalyzed by Cu-Zeolites

  • Estefanía Fernández
  • Marta Moreno-González
  • Manuel Moliner
  • Teresa Blasco
  • Mercedes Boronat
  • Avelino Corma
Original Paper
  • 194 Downloads

Abstract

We present a combined theoretical—experimental study aiming to provide information about the location and coordination environment of the Cu2+ species involved in the selective reduction of NOx with NH3 catalyzed by Cu-zeolites. From the experimental side, we show and discuss the EPR spectra of the three molecular sieves most widely used as catalysts for the NH3-SCR-NOx reaction, namely Cu-SSZ-13, Cu-SAPO-34 and Cu-ZSM-5 both in their hydrated state and after dehydration. Then, we investigate the EPR spectra of Cu-SSZ-13 and Cu-SAPO-34 under the following conditions: (i) after NH3 adsorption, (ii) after NO addition, and (iii) in the presence of a NO/O2 mixture. As regards the theoretical part, an exhaustive computational study has been performed that includes geometry optimization and calculation of the EPR parameters of all the relevant systems involved in the NH3-SCR-NOx reaction. The influence of local geometry and Al/Si distribution in the zeolite framework on the EPR parameters and the most probable location of Cu2+ in each material are analyzed, and assignations of the EPR signals obtained under different reaction conditions are discussed.

Keywords

Cu-zeolites Theoretical modelling EPR NH3-SCR-NOxreaction DFT 

Notes

Acknowledgements

This work has been supported by the Spanish Government through “Severo Ochoa Program” (SEV 2012-0267), MAT2015-71261-R and CTQ2015-68951-C3-1-R, and by the European Union through ERC-AdG-2014-671093 (SynCatMatch). Red Española de Supercomputación (RES) and Centre de Càlcul de la Universitat de Valencia are gratefully acknowledged for computational resources and technical support. E.F.V. thanks MINECO for her fellowship SVP-2013-068146.

Supplementary material

11244_2018_929_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1250 KB)

References

  1. 1.
    Chen H-Y (2014) In: Nova I, Tronconi E (eds) Urea-SCR technology for deNOx after treatment of diesel exhausts. Springer, New YorkGoogle Scholar
  2. 2.
    Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492–531Google Scholar
  3. 3.
    Gao F, Kwak J, Szanyi J, Peden CHF (2013) Top Catal 56:1441–1459Google Scholar
  4. 4.
    Deka U, Lezcano-González I, Weckhuysen BM, Beale AM (2013) ACS Catal 3:413–427Google Scholar
  5. 5.
    Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Chem Soc Rev 44:7371–7405Google Scholar
  6. 6.
    Zhang R, Liu N, Lei Z, Chen B (2016) Chem Rev 116:3658–3721Google Scholar
  7. 7.
    Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190Google Scholar
  8. 8.
    Bates SA, Verma A, Paolucci C, Parekh A, Anggara T, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) J Catal 312:87–97Google Scholar
  9. 9.
    Beale AM, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS (2016) Chem Commun 52:6170–6173Google Scholar
  10. 10.
    Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) J Catal 297:56–64Google Scholar
  11. 11.
    Paolucci C, Khurana I, Parekh AA, Li SC, Shih AJ, Li H, Di Iorio JR, Albarracin-Caballero JD, Yezerets A, Miller JT, Delgass WN, Ribeiro FH, Schneider WF, Gounder R (2017) Science 357:898–903Google Scholar
  12. 12.
    Gao F, Mei DH, Wang YL, Szanyi J, Peden CHF (2017) JACS 139:4935–4942Google Scholar
  13. 13.
    Dedecek J, Kaucky D, Wichterlova B (2000) Microporous Mesoporous Mater 35–36:483–494Google Scholar
  14. 14.
    Mentzen BF, Bergeret G (2007) J Phys Chem C 111:12512–12516Google Scholar
  15. 15.
    Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29Google Scholar
  16. 16.
    Godiksen A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138Google Scholar
  17. 17.
    Godiksen A, Vennestrom PNR, Rasmussen S, Mossin S (2017) Top Catal 60:13–29Google Scholar
  18. 18.
    Ames WM, Larsen SC (2010) J Phys Chem A 114:589–594Google Scholar
  19. 19.
    Groothaert MH, Pierloot K, Delabie A, Schoonheydt RA (2003) Phys Chem Chem Phys 5:2135–2144Google Scholar
  20. 20.
    Delabie A, Pierloot K, Groothaert MH, Weckhuysen BM, Shoonheydt RA (2002) Phys Chem Chem Phys 4:134–145Google Scholar
  21. 21.
    Pierloot K, Delabie A, Groothaert MH, Shoonheydt RA (2001) Phys Chem Chem Phys 3:2174–2183Google Scholar
  22. 22.
    Martinez-Franco R, Moliner M, Thogersen JR, Corma A (2013) ChemCatChem 5:3316–3323Google Scholar
  23. 23.
    Moliner M, Franch C, Palomares E, Grill M, Corma A (2012) Chem Commun 48:8264–8266Google Scholar
  24. 24.
    Martínez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82Google Scholar
  25. 25.
    Pietrzyk P, Podolska K, Sojka Z (2013) Electron Paramagn Reson 23:264–311Google Scholar
  26. 26.
    Malkin E, Repisky M, Komorovsky S, Mach P, Malkina OL, Malkin VG (2011) J Chem Phys 134:044111-1–044111-8Google Scholar
  27. 27.
    Hrobarik P, Repisky M, Komorovsky S, Hrobarikova V, Kaupp M (2011) Theoret Chem Acc129:715–725Google Scholar
  28. 28.
    Gohr S, Hrobarik P, Repisky M, Komorovsky S, Ruud K, Kaupp M (2015) J Phys Chem A 119:12892–12905Google Scholar
  29. 29.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev 2:73–78Google Scholar
  30. 30.
    Neese F (2005) J Chem Phys 122:034107-1–034107-13Google Scholar
  31. 31.
    Neese F (2003) J Chem Phys 118:3939–3948Google Scholar
  32. 32.
    Neese F (2001) J Chem Phys 115:11080–11096Google Scholar
  33. 33.
    Kossmann S, Kirchner B, Neese F (2007) Mol Phys 105:2049–2071Google Scholar
  34. 34.
    Ames WM, Larsen SC (2009) J Phys Chem A 113:4305–4312Google Scholar
  35. 35.
    Zunger A, Perdew JP (1981) Phys Rev B 23:5048–5079Google Scholar
  36. 36.
    King, Mebel, McGrady, Eisenstein, Macgregor, Pyykko, Hay, Bridgeman, Frenking, Deeth, Maseras, Poater, Kaltsoyannis, Cox, Stace (2003) Faraday Discuss 124:275–288Google Scholar
  37. 37.
    Neese F (2009) Coord Chem Rev 253:526–563Google Scholar
  38. 38.
    Neese F (2007) Electron Paramagn Reson 20:73–95Google Scholar
  39. 39.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186Google Scholar
  40. 40.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775Google Scholar
  41. 41.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249Google Scholar
  42. 42.
    Blöchl P (1994) Phys Rev B 50:17953–17979Google Scholar
  43. 43.
    Becke AD (1993) J Chem Phys 98:5648–5652Google Scholar
  44. 44.
    Becke AD (1998) Phys Rev A 38:3098–3100Google Scholar
  45. 45.
    Lee CT, Yang WT, Parr RGD (1998) Phys Rev B 37:785–789Google Scholar
  46. 46.
    Heß BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365–371Google Scholar
  47. 47.
    Neese F (2003) J Comput Chem 24:1740–1747Google Scholar
  48. 48.
    Kutzelnigg W, Fleischer U, Schindler M (1990) NMR-basic principles and progress. Springer-Verlag, HeidelbergGoogle Scholar
  49. 49.
    Neese F (2002) Inorg Chim Acta 337:181–192Google Scholar
  50. 50.
    Sinnecker S, Slep LD, Bill E, Neese F (2005) Inorg Chem 44:2245–2254Google Scholar
  51. 51.
    Gao F, Walter ED, Kollar M, Wang Y, Szanyi J, Peden CHF (2014) J Catal 319:1–14Google Scholar
  52. 52.
    Conesa JC, Soria J (1979) J Chem Soc Faraday Trans 75:406–422Google Scholar
  53. 53.
    de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Agren H (2007) Chem Phys 332:176–187Google Scholar
  54. 54.
    Zamadics M, Kevan L (1992) J Phys Chem 96:8989–8993Google Scholar
  55. 55.
    Ma L, Cheng YS, Cavataio G, McCabe RW, Fu LX, Li JH (2013) Chem Eng J 225:323–330Google Scholar
  56. 56.
    Kim YJ, Lee JK, Min KM, Hong SB, Nam IS, Cho BK (2014) J Catal 311:447–457Google Scholar
  57. 57.
    Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:2652–2657Google Scholar
  58. 58.
    Zamadics M, Chen XH, Kevan L (1992) J Phys Chem 96:5488–5491Google Scholar
  59. 59.
    Liu X, Wu X, Weng D, Si Z, Ran R (2017) Catal Today 281:596–604Google Scholar
  60. 60.
    Wang J, Yu T, Wang XQ, Qi GS, Xue JJ, Shen MQ, Li W (2012) Appl. Catal. B 127:137–147Google Scholar
  61. 61.
    Fickel DW, Lobo R (2010) J Phys Chem C 114:1633–1640Google Scholar
  62. 62.
    Di Iorio JR, Gounder R (2016) Chem Mater 28:2236–2247Google Scholar
  63. 63.
    Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) J Am Chem Soc 138:6028–6048Google Scholar
  64. 64.
    Godiksen A, Isaksen OI, Rasmussen SB, Vennestrom PNR, Mossin, S (2018) ChemCatChem 10:366–370Google Scholar
  65. 65.
    Uzunova EL, Mikosch H, Hafner J (2009) J Mol Struct 912:88–94Google Scholar
  66. 66.
    Kucherov AV, Karge HG, Schlogl R (1998) Microporous Mesoporous Mater 25:7–14Google Scholar
  67. 67.
    Dedecek J, Sobalík Z, Tvaruzkova D, Kaucky D, Wichterlova B (1995) J Phys Chem 99:16327–16337Google Scholar
  68. 68.
    Kucherov AV, Slinkin AA, Kondrat’ev DA, Bondarenko TN, Rubinstein AM, Minachev Kh M (1985) Zeolites 5:320–324Google Scholar
  69. 69.
    Kucherov AV, Gerlock JL, Jen HW, Shelef M (1994) J Phys Chem 98:4892–4894Google Scholar
  70. 70.
    Dedecek J, Balgova V, Pashkova V, Klein P, Wichterlova B (2012) Chem Mat 24:3231–3239Google Scholar
  71. 71.
    Nachtigallova D, Nachtigall P, Sauer J (2001) Phys Chem Chem Phys 3:1552–1559Google Scholar
  72. 72.
    Wichterlova B, Dedecek J, Sobalik Z (1998) In: Treacy MMJ, Marcus BK, Bisher ME, Higgins JB (eds.) Proceedings of the 12th International Zeolite Conference, Materials Research Society, Baltimore, USA, pp. 941–973Google Scholar
  73. 73.
    Moreno-Gonzalez M, Hueso B, Boronat M, Blasco T, Corma A (2015) J Phys Chem Lett 6:1011–1017Google Scholar
  74. 74.
    Lomachenko KA, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S (2016) J Am Chem Soc 138:12025–12028Google Scholar
  75. 75.
    Sojka Z, Che M, Giamello E (1997) J Phys Chem B 101:4831–4838Google Scholar
  76. 76.
    Prestipino C, Berlier G, Xamena F, Spoto G, Bordiga S, Zecchina A, Palomino GT, Yamamoto T, Lamberti C (2002) Chem Phys Lett 363:389–396Google Scholar
  77. 77.
    Umamaheswari V, Hartmann M, Poppl A (2005) J Phys Chem B 109:1537–1546Google Scholar
  78. 78.
    Moreno-Gonzalez M, Palomares AE, Chiesa M, Boronat M, Giamello E, Blasco T (2017) ACS Catal 7:3501–3509Google Scholar
  79. 79.
    Webb PA, Orr C (1997) Analytical methods in fine particle technology. Micrometrics, NorcrossGoogle Scholar
  80. 80.
    Yahiro H, Ohmori Y, Shiotani M (2005) Microporous Mesoporous Mater 83:165–171Google Scholar
  81. 81.
    Il’ichev AN, Ukharsky AA, Matyshak VA (1996) Mendeleev Commun 6:57–59Google Scholar
  82. 82.
    Matyshak VA, Il’ichev AN, Ukharsky AA, Korchak VN (1997) J Catal 171:245–254Google Scholar
  83. 83.
    Kucherov AV, Gerlock GL, Jen HW, Shelef M (1996) Catal Today 27:79–84Google Scholar
  84. 84.
    Giamello E, Murphy D, Magnacca G, Morterra C, Shioya Y, Nomura T, Anpo M (1992) J Catal 136:510–520Google Scholar
  85. 85.
    Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256Google Scholar
  86. 86.
    Pietrzyk P, Gil B, Sojka Z (2007) Catal Today 126:103–111Google Scholar
  87. 87.
    Konduru MV, Chuang SSC (2000) J Catal 196:271–286Google Scholar
  88. 88.
    Janssens TVW, Falsig H, Lundegaard LF, Vennestrøm PNR, Rasmussen SB, Moses PG, Giordanino F, Borfecchia E, Lomachenko KA, Lamberti C, Bordiga S, Godiksen A, Mossin S, Beato P (2015) ACS Catal 5:2832–2845Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Estefanía Fernández
    • 1
  • Marta Moreno-González
    • 1
    • 2
  • Manuel Moliner
    • 1
  • Teresa Blasco
    • 1
  • Mercedes Boronat
    • 1
  • Avelino Corma
    • 1
  1. 1.Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de València – Consejo Superior de Investigaciones CientíficasValenciaSpain
  2. 2.Department of ChemistryThe University of British ColumbiaVancouverCanada

Personalised recommendations