Advertisement

Topics in Catalysis

, Volume 61, Issue 9–11, pp 1163–1168 | Cite as

Insights into Ice Formation via Immersion Freezing from Nonlinear Optical Spectroscopy

  • Kaitlin A. Lovering
  • Keng C. Chou
Original Paper

Abstract

Ice formation is an exceedingly common phenomenon with quotidian, geological, biological, and atmospheric ramifications. Nevertheless, the nucleation and growth of ice is a poorly understood process. In environmentally relevant situations, nucleation and growth of ice often occurs on the surface of a heterogeneous phase that acts to catalyze the liquid-to-solid phase transition. Nonlinear optical spectroscopy is one of the few experimental techniques capable of accessing such buried interfaces. In this short perspective, insights into the dynamic growth of ice at solid surfaces are reviewed. Application of nonlinear optical spectroscopy to monitor ice formation is an emerging research topic. Ice formation may benefit from the presence of a solid surface. However, simple models of rigid interactions between surface and liquid must be modified to include dynamic interactions during formation and growth.

Keywords

Ice nucleation Heterogeneous phases Surfaces Nonlinear optical spectroscopy 

References

  1. 1.
    Becker R, Doring W (1935) Ann Phys 24:719–752CrossRefGoogle Scholar
  2. 2.
    Waychunas GA (2001) In: Banfield JF, Navrotsky A (eds) Structure, aggregation and characterization of nanoparticles, vol 44. Mineralogical Society of America, Washington, DCGoogle Scholar
  3. 3.
    Rosenfeld D, Woodley WL (2000) Nature 405:440–442CrossRefGoogle Scholar
  4. 4.
    Kanji ZA, Ladino LA, Wex H, Boose Y, Burkert-Kohn M, Cziczo DJ, Krämer M (2017) Meteorol Monogr 58:1.1–1.33CrossRefGoogle Scholar
  5. 5.
    Murray BJ, O’Sullivan D, Atkinson JD, Webb ME (2012) Chem Soc Rev 41:6519–6554CrossRefGoogle Scholar
  6. 6.
    Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner GK, Pörtner HO, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle JP (2014) Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, SwitzerlandGoogle Scholar
  7. 7.
    Pruppacher HRK (1997) Microphysics of clouds and precipitation. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  8. 8.
    Kaufmann L, Marcolli C, Luo BP, Peter T (2017) Atmos Chem Phys 17:3525–3552CrossRefGoogle Scholar
  9. 9.
    Shen YR (2000) J Sel Top Quantum Electron 6:1375–1379CrossRefGoogle Scholar
  10. 10.
    Shen YR (2013) J Phys Chem C 117:11884–11884CrossRefGoogle Scholar
  11. 11.
    Du Q, Freysz E, Shen YR (1994) Phys Rev Lett 72:238–241CrossRefGoogle Scholar
  12. 12.
    Groenzin H, Li I, Buch V, Shultz MJ (2007) J Chem Phys 127(21):214502-1–214502-8CrossRefGoogle Scholar
  13. 13.
    Shultz MJ, Bisson PJ, Brumberg A (2014) J Phys Chem B 118:7972–7980CrossRefGoogle Scholar
  14. 14.
    Wei X, Miranda PB, Zhang C, Shen YR (2002) Phys Rev B 66(8):085401–085414CrossRefGoogle Scholar
  15. 15.
    Anim-Danso E, Zhang Y, Dhinojwala A (2016) J Phys Chem C 120:3741–3748CrossRefGoogle Scholar
  16. 16.
    Abdelmonem A, Backus EHG, Hoffmann N, Sanchez MA, Cyran JD, Kiselev A, Bonn M (2017) Atmos Chem Phys 17:7827–7837CrossRefGoogle Scholar
  17. 17.
    Pauling L (1935) J Am Chem Soc 57:2680–2684CrossRefGoogle Scholar
  18. 18.
    Salzmann CG, Radaelli PG, Slater B, Finney JL (2011) Phys Chem Chem Phys 13:18468–18480CrossRefGoogle Scholar
  19. 19.
    Abdelmonem A, Lutzenkirchen J, Leisner T (2015) Atmos Meas Tech 8:3519–3526CrossRefGoogle Scholar
  20. 20.
    Anim-Danso E, Zhang Y, Alizadeh A, Dhinojwala A (2013) J Am Chem Soc 135:2734–2740CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Anim-Danso E, Dhinojwala A (2014) J Am Chem Soc 136:14811–14820CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Anim-Danso E, Bekele S, Dhinojwala A (2016) ACS Appl Mater Interfaces 8:17583–17590CrossRefGoogle Scholar
  23. 23.
    Pandey R, Usui K, Livingstone RA, Fischer SA, Pfaendtner J, Backus EHG, Nagata Y, Frohlich-Nowoisky J, Schmuser L, Mauri S, Scheel JF, Knopf DA, Poschl U, Bonn M, Weidner T (2016) Sci Adv 2(4):e1501630CrossRefGoogle Scholar
  24. 24.
    Lovering KA, Bertram AK, Chou KC (2017) T J Phys Chem Lett 8:871–875CrossRefGoogle Scholar
  25. 25.
    Malkin TL, Murray BJ, Salzmann CG, Molinero V, Pickering SJ, Whale TF (2015) Phys Chem Chem Phys 17:60–76CrossRefGoogle Scholar
  26. 26.
    Abdelmonem A (2017) Atmos Chem Phys 17:10733–10741CrossRefGoogle Scholar
  27. 27.
    Coluzza I, Creamean J, Rossi M, Wex H, Alpert P, Bianco V, Boose Y, Dellago C, Felgitsch L, Fröhlich-Nowoisky J, Herrmann H, Jungblut S, Kanji Z, Menzl G, Moffett B, Moritz C, Mutzel A, Pöschl U, Schauperl M, Scheel J, Stopelli E, Stratmann F, Grothe H, Schmale D (2017) Atmosphere 8:138CrossRefGoogle Scholar
  28. 28.
    Bi YF, Cabriolu R, Li TS (2016) J Phys Chem C 120:1507–1514CrossRefGoogle Scholar
  29. 29.
    Kiselev A, Bachmann F, Pedevilla P, Cox SJ, Michaelides A, Gerthsen D, Leisner T (2017) Science 355:367–371CrossRefGoogle Scholar
  30. 30.
    Florsheimer M, Brillert C, Fuchs H (1999) Langmuir 15:5437–5439CrossRefGoogle Scholar
  31. 31.
    Inoue K, Fujii M, Sakai M (2010) Appl Spectrosc 64:275–281CrossRefGoogle Scholar
  32. 32.
    Raghunathan V, Han Y, Korth O, Ge NH, Potma EO (2011) Opt Lett 36:3891–3893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations