Advertisement

Topics in Catalysis

, Volume 61, Issue 9–11, pp 986–1001 | Cite as

Catalytic CO Oxidation on Nanocatalysts

  • Jun Gyeong Lee
  • Kwangjin An
Original Paper
  • 202 Downloads

Abstract

CO oxidation, as one of the simplest catalytic reactions, has been widely studied in heterogeneous catalysis. Since CO can be easily adsorbed on active metals like Au, Pt, Pd, Rh, and Ru, many researchers have attempted to observe surface phenomena, including adsorption, surface restructuring, and oxidation kinetics on diverse metal surfaces ranging from single crystals to nanoparticles (NPs). The rapid advances in nanochemistry have further stimulated studies of catalytic reactions, and in-depth understanding of CO oxidation is possible based on analyses of how the size, shape, and composition affect the activity and determine the most effective active site of metal NPs. Recent research has demonstrated that the CO oxidation activity varies with the size of metallic NPs. The oxidation state of the NPs varies as a function of the size, and the surface oxide layers formed on NPs have been found to be important in enhancing or suppressing CO oxidation. Surface segregation of bimetallic NPs also influences the CO oxidation rate. The NP surfaces undergo significant adsorbate-induced structural changes, as confirmed by various in situ characterization techniques under catalytically relevant CO oxidation conditions. Based on the knowledge of support-induced catalytic properties, various metal-support interactions have been investigated for enhancing CO oxidation. By changing the reaction environments to either CO- or O-rich atmospheres, the synergetic effect at the interfaces of NPs and support oxides have been largely clarified. Versatile nanostructures with confined shells of small metal NPs have also been designed as core@shell-type catalysts. Using in situ characterization techniques combined with well-defined NPs, it is possible to study CO oxidation on the molecular level in order to gain vital mechanistic insights under catalytic working conditions.

Graphical Abstract

Keywords

CO oxidation Nanocatalyst Nanoparticle In situ characterization Activity Bimetallic 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1C1A1A01055092) and C1 Gas Refinery Program (2015M3D3A1A01064899).

References

  1. 1.
    Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Angew Chem Int Edit 43:10064CrossRefGoogle Scholar
  2. 2.
    Falsig H, Hvolbaek B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Norskov JK (2008) Angew Chem Int Edit 47:4835CrossRefGoogle Scholar
  3. 3.
    Christmann K, Schwede S, Schubert S, Kudernatsch W (2010) Chemphyschem 11:1344CrossRefGoogle Scholar
  4. 4.
    Chen MS, Cal Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Surf Sci 601:5326CrossRefGoogle Scholar
  5. 5.
    Kummer JT (1986) J Phys Chem 90:4747CrossRefGoogle Scholar
  6. 6.
    Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, HobokenGoogle Scholar
  7. 7.
    Somorjai GA, Aliaga C (2010) Langmuir 26:16190CrossRefGoogle Scholar
  8. 8.
    Somorjai GA, Beaumont SK, Alayoglu S (2011) Angew Chem Int Edit 50:10116CrossRefGoogle Scholar
  9. 9.
    Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212CrossRefGoogle Scholar
  10. 10.
    An K, Somorjai GA (2015) Catal Lett 145:233CrossRefGoogle Scholar
  11. 11.
    An K, Somorjai GA (2012) Chemcatchem 4:151CrossRefGoogle Scholar
  12. 12.
    Grass ME, Zhang YW, Butcher DR, Park JY, Li YM, Bluhm H, Bratlie KM, Zhang TF, Somorjai GA (2008) Angew Chem Int Edit 47:8893CrossRefGoogle Scholar
  13. 13.
    Joo SH, Park JY, Renzas JR, Butcher DR, Huang WY, Somorjai GA (2010) Nano Lett 10:2709CrossRefGoogle Scholar
  14. 14.
    Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai GA, Park JY (2012) Nano Lett 12:5761CrossRefGoogle Scholar
  15. 15.
    Tao F, Grass ME, Zhang Y, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu Z, Liu Z, Salmeron M, Somorjai GA (2010) J Am Chem Soc 132:8697CrossRefGoogle Scholar
  16. 16.
    Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932CrossRefGoogle Scholar
  17. 17.
    An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) J Am Chem Soc 135:16689CrossRefGoogle Scholar
  18. 18.
    An K, Zhang Q, Alayoglu S, Musselwhite N, Shin JY, Somorjai GA (2014) Nano Lett 14:4907CrossRefGoogle Scholar
  19. 19.
    Prieto G, Tuysuz H, Duyckaerts N, Knossalla J, Wang GH, Schuth F (2016) Chem Rev 116:14056CrossRefGoogle Scholar
  20. 20.
    Aijaz A, Xu Q (2014) J Phys Chem Lett 5:1400CrossRefGoogle Scholar
  21. 21.
    Hu P, Morabito JV, Tsung CK (2014) Acs Catal 4:4409CrossRefGoogle Scholar
  22. 22.
    Berlowitz PJ, Peden CHF, Goodman DW (1988) J Phys Chem 92:5213CrossRefGoogle Scholar
  23. 23.
    Campbell CT, Ertl G, Kuipers H, Segner J (1980) J Chem Phys 73:5862CrossRefGoogle Scholar
  24. 24.
    Rinnerno M, Kulginov D, Johansson S, Wong KL, Zhdanov VP, Kaserno B (1997) Surf Sci 376:297CrossRefGoogle Scholar
  25. 25.
    Su X, Crerner PS, Shen YR, Somorjai GA (1997) J Am Chem Soc 119:3994CrossRefGoogle Scholar
  26. 26.
    Berlowitz PJ, Peden CH, Goodman DW (1988) J Chem Phys 92:5213CrossRefGoogle Scholar
  27. 27.
    Lin TH, Somorjai GA (1981) Surf Sci 107:573CrossRefGoogle Scholar
  28. 28.
    Shen YR (1994) Surf Sci 299:551CrossRefGoogle Scholar
  29. 29.
    Shen YR (1984) The Principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  30. 30.
    Vogel D, Spiel C, Suchorski Y, Trinchero A, Schlogl R, Gronbeck H, Rupprechter G (2012) Angew Chem Int Edit 51:10041CrossRefGoogle Scholar
  31. 31.
    Vogel D, Spiel C, Suchorski Y, Urich A, Schlogl R, Rupprechter G (2011) Surf Sci 605:1999CrossRefGoogle Scholar
  32. 32.
    Huang W, Kuhn JN, Tsung C-K, Zhang Y, Habas SE, Yang P, Somorjai GA (2008) Nano Lett 8:2027CrossRefGoogle Scholar
  33. 33.
    Park JY, Zhang Y, Grass M, Zhang T, Somorjai GA (2008) Nano Lett 8:673CrossRefGoogle Scholar
  34. 34.
    Michalak WD, Krier JM, Alayoglu S, Shin JY, An K, Komvopoulos K, Liu Z, Somorjai GA (2014) J Catal 312:17CrossRefGoogle Scholar
  35. 35.
    Zheng F, Alayoglu S, Pushkarev VV, Beaumont SK, Specht C, Aksoy F, Liu Z, Guo JH, Somorjai GA (2012) Catal Today 182:54CrossRefGoogle Scholar
  36. 36.
    Zheng F, Alayoglu S, Guo JH, Pushkarev VV, Li YM, Glans PA, Chen JL, Somorjai GA (2011) Nano Lett 11:847CrossRefGoogle Scholar
  37. 37.
    Alayoglu S, Tao F, Altoe V, Specht C, Zhu ZW, Aksoy F, Butcher DR, Renzas RJ, Liu Z, Somorjai GA (2011) Catal Lett 141:633CrossRefGoogle Scholar
  38. 38.
    Park JY, Zhang Y, Joo SH, Jung Y, Somorjai GA (2012) Catal Today 181:133CrossRefGoogle Scholar
  39. 39.
    Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771CrossRefGoogle Scholar
  40. 40.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  41. 41.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175CrossRefGoogle Scholar
  42. 42.
    Haruta M, Date M (2001) Appl Catal A 222:427CrossRefGoogle Scholar
  43. 43.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  44. 44.
    Grunwaldt JD, Baiker A (1999) J Phys Chem B 103:1002CrossRefGoogle Scholar
  45. 45.
    Bond GC, Thompson DT (2000) Au Bull 33:41Google Scholar
  46. 46.
    Uchiyama T, Yoshida H, Kuwauchi Y, Ichikawa S, Shimada S, Haruta M, Takeda S (2011) Angew Chem Int Edit 50:10157CrossRefGoogle Scholar
  47. 47.
    Yoshida H, Kuwauchi Y, Jinschek JR, Sun KJ, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Science 335:317CrossRefGoogle Scholar
  48. 48.
    Liu XY, Liu MH, Luo YC, Mou CY, Lin SD, Cheng HK, Chen JM, Lee JF, Lin TS (2012) J Am Chem Soc 134:10251CrossRefGoogle Scholar
  49. 49.
    Kuhn JN, Tsung CK, Huang W, Somorjai GA (2009) J Catal 26:209CrossRefGoogle Scholar
  50. 50.
    Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2004) J Phys Chem B 109:2192CrossRefGoogle Scholar
  51. 51.
    Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang PD, Somorjai GA (2009) J Phys Chem C 113:6150CrossRefGoogle Scholar
  52. 52.
    Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) Catal Lett 129:1CrossRefGoogle Scholar
  53. 53.
    Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126CrossRefGoogle Scholar
  54. 54.
    Lee DG, Kim SM, Kim SM, Lee SW, Park JY, An K, Lee IS (2016) Chem Mater 28:9049CrossRefGoogle Scholar
  55. 55.
    El-Shall MS, Abdelsayed V, Khder AERS, Hassan HMA, El-Kaderi HM, Reich TE (2009) J Mater Chem 19:7625CrossRefGoogle Scholar
  56. 56.
    Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) Science 309:2040CrossRefGoogle Scholar
  57. 57.
    Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) J Am Chem Soc 131:11302CrossRefGoogle Scholar
  58. 58.
    Aijaz A, Akita T, Tsumori N, Xu Q (2013) J Am Chem Soc 135:16356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations