Advertisement

Topics in Catalysis

, Volume 61, Issue 9–11, pp 1193–1200 | Cite as

Modification of the Chemisorption Properties of Epitaxial Delafossite CuFeO2 Thin Films by Substituting Fe for Ga in the Crystal Structure

  • S. Rojas
  • T. Joshi
  • Q. Wang
  • Mikel B. Holcomb
  • D. Lederman
  • A. L. Cabrera
Original Paper
  • 86 Downloads

Abstract

Films of CuFeO2 and CuFe0.75Ga0.25O2 were grown over sapphire substrates in high vacuum using a pulsed laser deposition technique. The films grew with rhombohedral delafossite structure and highly epitaxial in the c-direction. Samples were characterized by X-ray diffraction, Raman spectroscopy and atomic force microscopy. Surface of the films were inspected with X-ray and UV photoelectron spectroscopy. Adsorption of CO2 and H2O was studied by a thermal program desorption technique. In both films Cu and Fe were exposed at the surface–gas interface. X-ray photoelectron data indicated that CO2 adsorbs preferentially at Cu sites forming a similar coordination to CuCO3. The energy for desorption of CO2 and H2O was estimated to be 30 kcal mol−1 (1.3 eV atom−1) for CuFeO2 and 36 kcal mol−1 (1.6 eV mol−1) for CuFe0.75Ga0.25O2. UV photoelectron spectroscopy showed that the valence band of the CuFeO2 delafossite oxides is modified with the substitution of Fe by Ga in the crystal lattice. The semiconductor band gap of CuFeO2 delafossite oxides also increased from 1.2 to 1.5 eV due to the substitution of Fe by Ga in the crystal lattice.

Keywords

Thin films Copper delafossite oxides Thermal desorption Carbon dioxide Water Electron spectroscopy Pulsed laser deposition 

Notes

Acknowledgements

Work at PUC was supported by FONDECyT 1130372 and Anillo ACT1409. Support from the American Chemical Society (PRF #56642-ND10) is also acknowledged. Thanks are due to WVU Shared Research Facilities. Thanks are due to M J Retamal for AFM images.

References

  1. 1.
    Angelis-Dimakis A, Biberacher M, Dominguez J, Fiorese G, Gadocha S, Gnansounou E, Guariso G, Kartalidis A, Panichelli L, Pinedo I, Robba M (2011) Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev 15:1182–1200CrossRefGoogle Scholar
  2. 2.
    Andrews J, Shabani B (2012) Re-envisioning the role of hydrogen in a sustainable energy economy. Int J Hydrogen Energy 37:1184–1203CrossRefGoogle Scholar
  3. 3.
    Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRefGoogle Scholar
  4. 4.
    Lao SJ, Qin HY, Ye LQ, Liu BH, Li ZP (2010) A development of direct hydrazine/hydrogen peroxide fuel cell. J Power Sources 195:4135–4138CrossRefGoogle Scholar
  5. 5.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  6. 6.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  7. 7.
    Tsuboi N, Tosaka K, Kobayashi S, Kato K, Kaneko F (2008) Preparation of delafossite-type CuYO2 films by solution method. Jpn J Appl Phys 47:588CrossRefGoogle Scholar
  8. 8.
    Ohashi M, Iida Y, Morikawa H (2002) Preparation of CuAlO2 films by wet chemical synthesis. J Am Ceram Soc 85:270–272CrossRefGoogle Scholar
  9. 9.
    Tonooka K, Shimokawa K, Nishimura O (2002) Properties of copper–aluminum oxide films prepared by solution methods. Thin Solid Films 411:129–133CrossRefGoogle Scholar
  10. 10.
    Beznosikov BV, Aleksandrov KS (2009) Predictions of compounds in the family of delafossites. J Struct Chem 50:102–107CrossRefGoogle Scholar
  11. 11.
    Read CG, Park Y, Choi KS (2012) Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J Phys Chem Lett 3:1872–1876CrossRefGoogle Scholar
  12. 12.
    Kato S, Fujimaki R, Ogasawara M, Wakabayashi T, Nakahara Y, Nakata S (2009) Oxygen storage capacity of CuMO2 (M = Al, Fe, Mn, Ga) with a delafossite-type structure. Appl Catal B 89:183–188CrossRefGoogle Scholar
  13. 13.
    Rojas S, Joshi T, Wheatley RA, Sarabia M, Borisov P, Lederman D, Cabrera AL (2016) Optical detection of carbon dioxide adsorption on epitaxial CuFe1–xGaxO2 delafossite film grown by pulse laser deposition. Surf Sci 648:23–28CrossRefGoogle Scholar
  14. 14.
    Joshi T, Senty TR, Trappen R, Zhou J, Chen S, Ferrari P, Borisov P, Song X, Holcomb MB, Bristow AD, Cabrera AL, Lederman D (2015) Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition. J Appl Phys 117:013908–013916CrossRefGoogle Scholar
  15. 15.
    Wheatley RA, Rojas S, Oppolzer C, Joshi T, Borisov P, Lederman D, Cabrera AL (2017) Comparative study of the structural and optical properties of epitaxial CuFeO2 and CuFe1–xGaxO2 delafossite thin films grown by pulsed laser deposition methods. Thin Solid Films 626:110–116CrossRefGoogle Scholar
  16. 16.
    Aktas O, Truong KD, Otani T, Balakrishnan G, Clouter MJ, Kimura T, Quirion G (2011) Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2. J Phys Condens Matter 24:036003–036014CrossRefGoogle Scholar
  17. 17.
    Pellicer-Porres J, Segura A, Ferrer-Roca C, Martinez-Garcia D, Sans JA, Martinez E, Itié JP, Polian A, Baudelet F, Muñoz A, Rodríguez-Hernández P (2004) Structural evolution of the CuGaO2 delafossite under high pressure. Phys Rev B 69:024109CrossRefGoogle Scholar
  18. 18.
    Benko FA, Koffyberg FP (1987) Opto-electronic properties of p-and n-type delafossite, CuFeO2. J Phys Chem Solids 48:431–434CrossRefGoogle Scholar
  19. 19.
    Ong KP, Bai K, Blaha P, Wu P (2007) Electronic structure and optical properties of AFeO2 (A = Ag, Cu) within GGA calculations. Chem Mater 19:634–640CrossRefGoogle Scholar
  20. 20.
    Biesinger MC, Lau LW, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898CrossRefGoogle Scholar
  21. 21.
    Ghijsen J, Tjeng LH, Van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322–11330CrossRefGoogle Scholar
  22. 22.
    Poulston S, Parlett PM, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820CrossRefGoogle Scholar
  23. 23.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730CrossRefGoogle Scholar
  24. 24.
    Paparazzo E (1987) XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3. J Electron Spectrosc Relat Phenom 43:97–112CrossRefGoogle Scholar
  25. 25.
    Hawn DD, DeKoven BM (1987) Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf Interface Anal 10:63–74CrossRefGoogle Scholar
  26. 26.
    Christopher J, Swamy CS (1992) Catalytic activity and XPS investigation of dalofossite oxides, CuMO2 (M = Al, Cr or Fe). J Mater Sci 27:1353–1356CrossRefGoogle Scholar
  27. 27.
    Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273CrossRefGoogle Scholar
  28. 28.
    Ramos-Moore E, Diaz-Droguett DE, Spring P, Evans JT, Cabrera AL (2011) Generation of oxygen vacancies in the surface of ferroelectric Pb (Nb, Zr, Ti) O3. Appl Surf Sci 257:4695–4698CrossRefGoogle Scholar
  29. 29.
    Nahar S, Zain MFM, Kadhum AAH, Hasan HA, Hasan MR (2017) Advances in photocatalytic CO2 reduction with water: a review. Materials 10:629–655CrossRefGoogle Scholar
  30. 30.
    Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203–211CrossRefGoogle Scholar
  31. 31.
    Cabrera AL (1990) Kinetic parameters obtained from area integration of single peak thermal desorption spectra. J Chem Phys 93:2854–2858CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Rojas
    • 1
  • T. Joshi
    • 2
  • Q. Wang
    • 2
  • Mikel B. Holcomb
    • 2
  • D. Lederman
    • 3
  • A. L. Cabrera
    • 1
  1. 1.Instituto de FísicaPontificia Universidad Católica de ChileMaculChile
  2. 2.Department of Physics and AstronomyWest Virginia UniversityMorgantownUSA
  3. 3.Department of PhysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations