Skip to main content
Log in

Charge-Transfer Effect of GZO Film on Photochemical Water Splitting of Transparent ZnO@GZO Films by RF Magnetron Sputtering

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

With the purpose of enhancing the photochemical water splitting performance, GZO film has been used to increase the charge transfer of the ZnO@GZO films. The characterization of ZnO film, GZO film and ZnO@GZO films was carried out by X-ray diffraction (XRD), atomic force microscope, DRUV-vis spectra (DRUV-vis), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and photochemical water splitting. All samples show a related highly c-axis peak (002) from XRD patterns. DRUV-vis results show that the formed GZO film with wide band gap but low resistivity, would not affect the band gap of the ZnO@GZO films. PL results reveal that the decreased recombination of electron and hole, via the increased charge transfer by GZO film. XPS results hint that the obvious change of chemisorbed oxygen species on the surface of ZnO and GZO, and Ga atoms mainly substitute into Zn sites in the ZnO matrix. Compared with that of ZnO film, the ZnO@GZO films even with lower specific surface area, could efficiently enhance the photochemical water splitting performance via the charge-transfer effect of the GZO film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:35–44

    Article  Google Scholar 

  2. Hosono H (2007) Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515:6000–6014

    Article  CAS  Google Scholar 

  3. Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO-nanostructures, defects, and devices. Mater Today 10:40–48

    Article  CAS  Google Scholar 

  4. Arya SK, Saha S, Ramirez-Vick JE et al (2012) Singh SP recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal Chim Acta 737:1–21

    Article  CAS  Google Scholar 

  5. Kozuka Y, Tsukazaki A, Kawasaki M (2014) Challenges and opportunities of ZnO-related single crystalline heterostructures. Appl Phys Rev 1:011303

    Article  Google Scholar 

  6. Sebastian CD, David OS, Claire JC et al (2016) n-Type doped transparent conducting binary oxides: an overview. J Mater Chem C 4:6946–6961

    Google Scholar 

  7. Mizoguchi H, Woodward PM (2004) Electronic structure studies of main group oxides possessing edge-sharing octahedra: implications for the design of transparent conducting oxides. Chem Mater 16:5233–5248

    Article  CAS  Google Scholar 

  8. Zou X, Fan H, Tian Y et al (2014) Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 15:1149–1156

    Article  Google Scholar 

  9. Cai Y, Fan H, Xu M et al (2013) Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloid Surf A 436:787–795

    Article  CAS  Google Scholar 

  10. Song N, Fan H, Tian H (2015) Reduced graphene oxide/ZnO nanohybrids: metallic Zn powder induced one-step synthesis for enhanced photocurrent andphotocatalytic response. Appl Surf Sci 353:580–587

    Article  CAS  Google Scholar 

  11. Tian H, Fan H, Li M et al (2016) Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens 1:243–250

    Article  CAS  Google Scholar 

  12. Nulhakim L, Makino H (2016) Control of microstructure by using self-buffer layer and its effects on properties of Ga-doped ZnO thin films deposited by radio frequency magnetron sputtering. Thin Solid Films 615:158–164

    Article  CAS  Google Scholar 

  13. Zhu C, Li J, Yang Y et al (2017) Highly moisture and weak-acid resistant Ga-doped ZnO films with titanium dioxide co-doping fabricated by magnetron sputtering. Thin Solid Films 634:155–159

    Article  CAS  Google Scholar 

  14. Cuong HB, Lee CS, Jeong SH et al (2017) Realization of highly conductive Ga-doped ZnO film with abnormally wide band-gap using magnetron sputtering by simply lowering working pressure. Acta Mater 130:47–55

    Article  CAS  Google Scholar 

  15. Gao W, Li Z (2004) ZnO thin films produced by magnetron sputtering. Ceram Int 30:1155–1159

    Article  CAS  Google Scholar 

  16. Kim C, Kim S, Lee C (2005) Effects of RF power and substrate temperature during RF magnetron sputtering on grystal quality of ZnO thin films. Jpn J Appl Phys 44:8501–8503

    Article  CAS  Google Scholar 

  17. Zou Y, Yang H, Wang H et al (2013) Microstructure, optical and photoluminescence properties of Ga-doped ZnO films prepared by pulsed laser deposition. Physica B 414:7–11

    Article  CAS  Google Scholar 

  18. Wu S, Chan C, Chien C (2016) Enhanced emission and photoconductivity due to photo-induced charge transfer from Au nanoislands to ZnO. Appl Phys Lett 108:041104

    Article  Google Scholar 

  19. Barman MK, Mitra P, Bera R et al (2017) An efficient charge separation and photocurrent generation in the carbon dot-zinc oxide nanoparticle composite. Nanoscale 9:6791–6799

    Article  CAS  Google Scholar 

  20. Saha M, Ghosh S, Ashok VD et al (2015) Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals. Phys Chem Chem Phys 17:16067–16079

    Article  CAS  Google Scholar 

  21. Zhu D, Wang Q, Han S et al (2014) Optimization of process parameters for the electrical properties in Ga-doped ZnO thin films prepared by rf magnetron sputtering. Appl Surf Sci 298:208–213

    Article  CAS  Google Scholar 

  22. Ma L, Fan H, Li M et al (2015) A simple melamine-assisted exfoliation of polymeric graphitic carbon nitrides for highly efficient hydrogen production from water under visible light. J Mater Chem A 3:22404–22412

    Article  CAS  Google Scholar 

  23. Chen S, Carraro G, Barreca D et al (2015) Aerosol assisted chemical vapour deposition of Ga-doped ZnO films for energy efficient glazing: effects of doping concentration on the film growth behaviour and opto-electronic properties. J Mater Chem A 3:13039–13049

    Article  CAS  Google Scholar 

  24. Bekermann D, Gasparotto A, Barreca D et al (2010) Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Cryst Growth Des 10:2011–2018

    Article  CAS  Google Scholar 

  25. Sahai A, Goswami N (2014) Probing the dominance of interstitial oxygen defects in ZnO nanoparticles through structural and optical characterizations. Ceram Int 40:14569–14578

    Article  CAS  Google Scholar 

  26. Park GC, Hwang SM, Lim JH et al (2014) Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method. Nanoscale 6:1840–1847

    Article  CAS  Google Scholar 

  27. Cheon D, Soo M, Ham MH et al (2016) Resistive switching in an amorphous ZnO dielectric film prepared on a Ga-doped ZnO transparent electrode. RSC Adv 6:103864–103871

    Article  CAS  Google Scholar 

  28. Jung H, Kim D, Kim H (2014) The electrical properties of low pressure chemical vapor deposition Ga doped ZnO thin films depending on chemical bonding configuration. Appl Surf Sci 297:125–129

    Article  CAS  Google Scholar 

  29. Hinkle CL, Milojevic M, Brennan B et al (2009) Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning. Appl Phys Lett 94:162101

    Article  Google Scholar 

  30. Tian H, Fan H, Ma J et al (2017) Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing. Electrochim Acta 247:787–794

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Yamawaki, L., Zhang, P. et al. Charge-Transfer Effect of GZO Film on Photochemical Water Splitting of Transparent ZnO@GZO Films by RF Magnetron Sputtering. Top Catal 61, 1585–1590 (2018). https://doi.org/10.1007/s11244-018-0916-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0916-3

Keywords

Navigation