Nitrohydroxylation of Olefins with Nitric Acid Using Tridentate NHC–Amidate–Alkoxide Containing Palladium Catalysts

  • Justin O’Neill
  • Joo Ho Lee
  • Sungah Kim
  • Nima Zargari
  • Bijan Ketabchi
  • Jason Akahoshi
  • Felicia Yang
  • Kyung Woon Jung
Original Paper
  • 29 Downloads

Abstract

In an attempt to explore the method of nitrohydroxylation which is fairly underdeveloped, our tridentate NHC–amidate–alkoxide containing palladium catalyst was used to nitrohydroxylate a variety of olefins in the presence of nitric acid. These reactions furnished β-nitro alcohols selectively to serve as a direct method for the synthesis of such compounds from various kinds of olefins. Dioxane served as an effective solvent, particularly in conjunction with TFA and AgNO3, which selectively generated the desired products. Vinyl arenes and other olefins produced a wide range of desired products in moderate to good yields.

Keywords

Nitrohydroxylation β-Nitro alcohols NHC–amidate–alkoxide containing palladium catalyst 

Notes

Compliance with Ethical Standards

Conflict of interest

We do not have any potential conflicts of interest.

Research Involving Human Participants and/or Animals

This work doesn’t involve any human participants or animals.

Informed Consent

We do not have any informed consent.

Supplementary material

11244_2018_915_MOESM1_ESM.pdf (443 kb)
Supplementary material 1 (PDF 442 KB)

References

  1. 1.
    Bordwell FG, Garbisch EW (1960) J Chem Soc 82(14):3588–3598CrossRefGoogle Scholar
  2. 2.
    Bordwell FG, Garbisch EW (1963) J Org Chem 28(7):1765–1769CrossRefGoogle Scholar
  3. 3.
    Bordwell FG, Garbisch EW (1962) J Org Chem 27(9):3049–3055CrossRefGoogle Scholar
  4. 4.
    Bordwell FG, Biranowski JB (1967) J Org Chem 32(3):629–634CrossRefGoogle Scholar
  5. 5.
    Ono N (2001) The nitro group in organic synthesis. Chapter 3. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  6. 6.
    Bodkin JA, Mcleod MD (2002) J Chem Soc 1:2733–2746Google Scholar
  7. 7.
    Palomo C, Oiarbide M, Laso A (2007) Eur J Org Chem 2007(16):2561–2574CrossRefGoogle Scholar
  8. 8.
    Luzzio FA (2001) Tetrahedron 57(6):915–945CrossRefGoogle Scholar
  9. 9.
    Thimmaiah G, Narayanaswamy N (March 2, 2017) Compounds as Stimuli-responsive Probes, Methods and Applications thereof. WO 2017033163Google Scholar
  10. 10.
    Shen G, Zhao L, Liu W, Huang X, Song H, Zhang T (2017) Synth Commun 47(1):10–14CrossRefGoogle Scholar
  11. 11.
    Sakaguchi S, Yoo KS, O’Neill J, Jung KW (2008) Angew Chem Int Ed 47:9326–9329CrossRefGoogle Scholar
  12. 12.
    Yoo KS, O’Neill J, Sakaguchi S, Giles R, Lee JH, Jung KW (2009) J Org Chem 75:95–101CrossRefGoogle Scholar
  13. 13.
    Zargari N, Gilles R, Kim Y, Kaneshiro K, Runburg R, Park J, LaCroix K, Narain R, Lee BD, Lee JH, Jung KW (2016) Tetrahedron Lett 57:815–818CrossRefGoogle Scholar
  14. 14.
    Esteves PM, Carneiro JWM, Cardoso SP, Barbosa AGH, Laali KK, Rasul G, Prakash GKS, Olah GA (2003) J Am Chem Soc 125(16):4836–4849CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations