Rearrangement of Cyclopropylcarbinyl Chloride Over Protonic Zeolites: Formation of Carbocations and Behavior as Solid Solvents

Original Paper
  • 16 Downloads

Abstract

The rearrangement of cyclopropylcarbinyl chloride was studied over protonic zeolites and K-10 Montmorillonite. The energy of activation is lower on zeolites, with K-10 showing almost the same value for the rearrangement in 80% aqueous ethanol solution. HUSY showed the lowest energy of activation, whereas HZSM-5 and HYD [dealuminated with (NH4)2SiF6] presented similar energy of activation. This difference may be due to the presence of extra-framework aluminum species. On the other hand, the entropy of activation is significantly less negative on ZSM-5 and may be associated with the narrower pore structure, providing ionization of the substrate without losing many degrees of freedom. Kinetic isotope effects indicated that ionization is assisted by hydrogen bonding of the zeolite OH groups with the leaving halide, similar to the push–pull mechanism proposed for solution chemistry. Hence, zeolites behave as solid solvents, providing a polar microscopic environment for ionic reactions to take place, and solvating the transition state and the ions formed.

Keywords

Zeolites Carbocation Acid catalysis Rearrangement 

Notes

Acknowledgements

Authors thank financial support from CNPq and FAPERJ.

References

  1. 1.
    Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614CrossRefGoogle Scholar
  2. 2.
    Farneth WE, Gorte RJ (1995) Methods for characterizing zeolite acidity. Chem Rev 95:615–635CrossRefGoogle Scholar
  3. 3.
    Umansky B, Engelhardt J, Hall WK (1991) On the strength of solid acids. J Catal 127:128–140CrossRefGoogle Scholar
  4. 4.
    Xu TE, Munson J, Haw JF (1994) Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones. J Am Chem Soc 116:1962–1972CrossRefGoogle Scholar
  5. 5.
    Gonçalves VLC, Rodrigues RC, Lorençato R, Mota CJA (2007) Assessing the acid strength of solid acid catalysts with the use of linear free energy relationship: H/D exchange with substituted benzene derivatives. J Catal 248:158–164CrossRefGoogle Scholar
  6. 6.
    Mota CJA, Martins RM (1991) Hydrogen-deuterium exchange between zeolite Y and 3-methylpentane. J Chem Soc Chem Commun.  https://doi.org/10.1039/C39910000171 Google Scholar
  7. 7.
    Mota CJA, Nogueira L, Kover WB (1992) Rearrangement of pentacoordinated carbonium ions over zeolite Y. J Am Chem Soc 114:1121–1123CrossRefGoogle Scholar
  8. 8.
    Kramer GJ, van Santen RA, Emels CA, Nowak AK (1993) Understanding the acid behavior of zeolites from theory and experiment. Nature 363:529–531CrossRefGoogle Scholar
  9. 9.
    Sommer J, Hachoumy M, Garin F, Barthomeuf D (1994) Zeolite Y-catalyzed versus superacid-catalyzed protium-deuterium exchange in alkanes. J Am Chem Soc 116:5491–5492CrossRefGoogle Scholar
  10. 10.
    Stepanov AG, Arzumanov SS, Luzgin MV, Ernst H, Freude D, Parmon VN (2005) In situ 1H and 13C MAS NMR study of the mechanism of H/D exchange for deuterated propane adsorbed on H-ZSM-5. J Catal 235:221–228CrossRefGoogle Scholar
  11. 11.
    Olah GA, Schlosberg RH (1968) Chemistry in super acids. I. Hydrogen exchange and polycondensation of methane and alkanes in FSO3H-SbF5 (“magic acid”) solution. Protonation of alkanes and the intermediacy of CH5 + and related hydrocarbon ions. The high chemical reactivity of “paraffins” in ionic solution reactions. J Am Chem Soc 90:2726–2727CrossRefGoogle Scholar
  12. 12.
    Hogeveen H, Bickel AF (1969) Chemistry and spectroscopy in strongly acidic solutions. Part XXIV: Electrophilic substitution at alkanes. Rec Trav Chim Pays-Bas 88:371–378CrossRefGoogle Scholar
  13. 13.
    Olah GA (1973) Carbocations and electrophilic reactions. Angew Chem Int Ed Engl 12:173–212CrossRefGoogle Scholar
  14. 14.
    Olah GA, Prakash GKS, Williams RE, Field LD, Wade K (1987) Hypercarbon chemistry. Wiley, New YorkGoogle Scholar
  15. 15.
    Olah GA, Prakash GKS, Sommer J, Molnar A (2009) Superacid chemistry. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Aronson MT, Gorte RJ, Farneth WE, White D (1989) Carbon-13 NMR identification of intermediates formed by 2-methyl-2-propanol adsorption in H-ZSM-5. J Am Chem Soc 111:840CrossRefGoogle Scholar
  17. 17.
    Haw JF, Richardson BR, Oshiro IS, Lazo ND, Speed JA (1989) Reactions of propene on zeolite HY catalyst studied by in situ variable temperature solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 111:2052–2058CrossRefGoogle Scholar
  18. 18.
    Haw JF, Nicholas JB, Xu T, Beck LW, Ferguson DB (1996) Physical organic chemistry of solid acids: lessons from in situ NMR and theoretical chemistry. Acc Chem Res 29:259–267CrossRefGoogle Scholar
  19. 19.
    Boronat M, Viruela PM, Corma A (2004) Reaction intermediates in acid catalysis by zeolites: prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure. J Am Chem Soc 126:3300–3309CrossRefGoogle Scholar
  20. 20.
    Tuma C, Sauer J (2005) Protonated isobutene in zeolites: tert-butyl cation or alkoxide? Angew Chem Int Ed Engl 44:4769–4771CrossRefGoogle Scholar
  21. 21.
    Rosenbach N Jr, dos Santos APA, Franco M, Mota CJA (2010) The tert-butyl cation on zeolite Y: a theoretical and experimental study. Chem Phys Lett 485:124–128CrossRefGoogle Scholar
  22. 22.
    Mota CJA, Rosenbach N Jr (2011) Carbocations on Zeolites. Quo vadis? J Braz Chem Soc 22:1197–1205CrossRefGoogle Scholar
  23. 23.
    Kling DP, Chagas HC, Machado ESA, dos Santos APA, Rosenbach N Jr, Carneiro JW, Mota CJA (2013) Dynamic behaviour of carbocations on zeolites: mobility and rearrangement of the C4H7 + system. Chem Commun 49:4480–4482CrossRefGoogle Scholar
  24. 24.
    Correa RJ, Mota CJA (2002) SN2, E2 reactions of butylchlorides on NaY zeolite: a potential method for studying the formation and reactivity of alkoxy species on the zeolite surface. Phys Chem Chem Phys 4:4268–4274CrossRefGoogle Scholar
  25. 25.
    Correa RJ, Mota CJA (2003) Effect of the compensating cation on the adsorption of t-butyl chloride on zeolite Y. Appl Catal A 255:255–264CrossRefGoogle Scholar
  26. 26.
    Rosenbach N Jr, Mota CJA (2005) A DFT study of SN2 and E2 reactions of butylhalides on zeolite Y: effect of the leaving group on formation and reactivity of the alkoxy species. J Mol Struct (Theochem) 731:157–161CrossRefGoogle Scholar
  27. 27.
    Franco M, Rosenbach N Jr, Ferreira GB, Guerra ACO, Kover WB, Turci CC, Mota CJA (2008) Rearrangement, nucleophilic substitution and halogen switch reactions of alkyl halides over NaY zeolite: formation of the bicyclobutonium cation inside the zeolite cavity. J Am Chem Soc 130:1592–1600CrossRefGoogle Scholar
  28. 28.
    Arca HA, Gomes GCC, Mota CJA (2014) Solid solvents: activation parameters for the rearrangement of cyclopropylcarbinyl bromide on mordenite zeolite. New J Chem 38:2760–2762CrossRefGoogle Scholar
  29. 29.
    Olah GA, Jeuell CL, Kelly DP, Porter RD (1972) Stable carbocations. CXIV. The structure of cyclopropylcarbinyl and cyclobutyl cations. J Am Chem Soc 94:146-CrossRefGoogle Scholar
  30. 30.
    Olah GA, Reddy VP, Prakash GKS (1992) Long-lived cyclopropylcarbinyl cations. Chem Rev 92:69–95CrossRefGoogle Scholar
  31. 31.
    Roberts JD, Mazur RH (1951) Small-ring compounds. IV. Interconversion reactions of cyclobutyl, cyclopropylcarbinyl and allylcarbinyl derivatives. J Am Chem Soc 73:2509–2520CrossRefGoogle Scholar
  32. 32.
    Mazur RH, White WN, Semenov DA, Lee CC, Silver MS, Roberts JD (1959) Small-ring compounds. XXIII. The nature of the intermediates in carbonium ion-type interconversion reactions of cyclopropylcarbinyl, cyclobutyl and allylcarbinyl derivatives. J Am Chem Soc 81:4390–4398CrossRefGoogle Scholar
  33. 33.
    Garralon G, Fornes V, Corma A (1988) Faujasites dealuminated with ammonium hexafluorosilicate: Variables affecting the method of preparation. Zeolites 8:268–272CrossRefGoogle Scholar
  34. 34.
    Gilson JP, Edwards GC, Peters AW, Rajagopalan K, Wormsbecher RF, Roberie TG, Shatlock MP (1987) Penta-co-ordinated aluminium in zeolites and aluminosilicates. J Chem Soc Chem Commun.  https://doi.org/10.1039/C39870000091 Google Scholar
  35. 35.
    van Bokhoven JA, Roest AL, Koningsberger DC, Miller JT, Nachtegaal GH, Kentgens APM (2000) Changes in structural and electronic properties of the zeolite framework induced by extraframework Al and La in H-USY and La(x)NaY: A 29Si and 27Al MAS NMR and 27Al MQ MAS NMR study. J Phys Chem B 104:6743–6754CrossRefGoogle Scholar
  36. 36.
    Yan Z, Ma D, Zhuang J, Liu X, Liu X, Han X, Bao X, Chang F, Xu L, Liu Z (2003) On the acid-dealumination of USY zeolite: a solid-state NMR investigation. J Mol Catal A 194:153–167CrossRefGoogle Scholar
  37. 37.
    Omegna A, van Bokhoven JA, Prins R (2003) Flexible aluminum coordination in alumino–silicates. Structure of zeolite H–USY and amorphous silica–alumina. J Phys Chem B 107:8854–8860CrossRefGoogle Scholar
  38. 38.
    Beyerlein RA, McVicker GB, Yacullo LN, Ziemiak J (1988) The influence of framework and nonframework aluminum on the acidity of high-silica, proton-exchanged FAU-framework zeolites. J Phys Chem 92:1967–1970CrossRefGoogle Scholar
  39. 39.
    Carvajal R, Chu PJ, Lunsford JH (1990) The role of polyvalent cations in developing strong acidity: a study of lanthanum-exchanged zeolites. J Catal 125:123–131CrossRefGoogle Scholar
  40. 40.
    Mota CJA, Martins RL, Nogueira L, Kover WB (1994) Reactivity of zeolite hydroxyls toward σ-donor bases. H-D exchange with 3-methylpentane. J Chem Soc Faraday Trans 90:2297–2302CrossRefGoogle Scholar
  41. 41.
    Wang QL, Giannetto G, Guisnet M (1991) Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking. J Catal 130:471–482CrossRefGoogle Scholar
  42. 42.
    Lónyi F, Lunsford JH (1992) The development of strong acidity in hexafluorosilicate-modified Y-type zeolites. J Catal 136:566–577CrossRefGoogle Scholar
  43. 43.
    Mota CJA, Bhering DL, Rosenbach N Jr (2004) Acidity of USY Zeolites: where is the Bronsted/Lewis acid synergism? Angew Chem Int Ed 43:3050–3053CrossRefGoogle Scholar
  44. 44.
    Brown HC, Borkowski M (1952) The effect of ring size on the rate of solvolysis of the 1-chloro-1-methylcycloalkanes. J Am Chem Soc 74:1894–1902CrossRefGoogle Scholar
  45. 45.
    Bhan A, Gounder R, Macht J, Iglesia E (2008) Entropy considerations in monomolecular cracking of alkaneson acidic zeolites. J Catal 253:221–224CrossRefGoogle Scholar
  46. 46.
    Gounder R, Iglesia E (2012) The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc Chem Res 45:229–238CrossRefGoogle Scholar
  47. 47.
    Laughton PM, Robertson RE (1965) Solvolysis in light and heavy water VI. The role of initial state structure. Can J Chem 43:154–158CrossRefGoogle Scholar
  48. 48.
    Craig WG, Hakka L, Laughton PM, Robertson RE (1963) Solvolysis in light and heavy water V. Effect of dioxane on the solvent isotope effect with t-butyl chloride. Can J Chem 41:2118–2120CrossRefGoogle Scholar
  49. 49.
    Lowry TH, Richardson KS (1981) Theory and mechanism in organic chemistry. Harper and Row, New YorkGoogle Scholar
  50. 50.
    Bhering DL, Ramirez-Solís A, Mota CJA (2003) A density functional theory based approach to extra framework aluminum species in zeolites. J Phys Chem B 107:4342–4347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.INCT Energia e Ambiente, UFRJRio de JaneiroBrazil

Personalised recommendations