Decarboxylative Cross-Coupling of Cinnamic Acids Catalyzed by Iron-Based Covalent Organic Frameworks

Original Paper
  • 118 Downloads

Abstract

FeCl3·6H2O was anchored in the pores of a layered crystalline imine-based mesoporous covalent organic framework (TPB-DMTP-COF) with surface area of 1200 m2/g and pores of 34 Å, affording the material FeCl3@TPB-DMTP-COF that worked as iron based heterogeneous catalyst. This new porous material was used in the decarboxylative oxidation cross-coupling reaction of cinnamic acids showing good to excellent catalytic activity with good chemical yields and short reaction time. FeCl3@TPB-DMTP-COF exhibit moderate surface area (235 m2/g) and high thermal and chemical stability allowing it use for several catalytic cycles.

Graphical Abstract

Keywords

COF Heterogeneous catalysis Iron Decarboxylative cross-coupling Cinnamic acids 1,4-Dioxane Cyclohexane 

Notes

Acknowledgements

This research is partly supported by CNPq, CAPES and FAPERJ. PME acknowledge INOMAT for support. We dedicate this manuscript to Prof. George A. Olah.

Supplementary material

11244_2018_910_MOESM1_ESM.doc (5.2 mb)
Supplementary material 1. Detailed synthetic procedures, spectra of reaction products and extra material characterization. (DOC 5277 KB)

References

  1. 1.
    Saha P, Jeon H, Mishra PK, Rhee H-W, Kwak JH (2016) J Mol Catal A 417(Supplement C):10–18CrossRefGoogle Scholar
  2. 2.
    Veisi H, Manesh AA, Eivazi N, Faraji AR (2015) RSC Adv 5(26):20098–20107CrossRefGoogle Scholar
  3. 3.
    Luo Y, Liu J, Liu Y, Lyu Y (2017) J Polym Sci Part A 55(16):2594–2600CrossRefGoogle Scholar
  4. 4.
    Bai L, Phua SZF, Lim WQ, Jana A, Luo Z, Tham HP, Zhao L, Gao Q, Zhao Y (2016) Chem Comm 52(22):4128–4131CrossRefGoogle Scholar
  5. 5.
    Fang Q, Wang J, Gu S, Kaspar RB, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y (2015) J Am Chem Soc 137(26):8352–8355CrossRefGoogle Scholar
  6. 6.
    Kim IS, Li Z, Zheng J, Platero-Prats AE, Mavrandonakis A, Pellizzeri S, Ferrandon M, Vjunov A, Gallington LC, Webber T, Vermeulen NA, Penn RL, Getman RB, Cramer CJ, Chapman KW, Camaioni DM, Fulton JL, Lercher JA, Farha OK, Hupp JT, Martinson A (2018) Angew Chem Int Ed 57(4):909–913CrossRefGoogle Scholar
  7. 7.
    Li Z, Schweitzer NM, League AB, Bernales V, Peters AW, Getsoian AB, Wang TC, Miller JT, Vjunov A, Fulton JL, Lercher JA, Cramer CJ, Gagliardi L, Hupp JT, Farha OK (2016) J Am Chem Soc 138(6):1977–1982CrossRefGoogle Scholar
  8. 8.
    Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Nano Lett 14(10):5979–5983CrossRefGoogle Scholar
  9. 9.
    IXamena FXL, Casanova O, Tailleur RG, Garcia H, Corma A (2008) J Catal 255(2):220–227CrossRefGoogle Scholar
  10. 10.
    Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) J Am Chem Soc 135(14):5328–5331CrossRefGoogle Scholar
  11. 11.
    Xu H, Gao J, Jiang D (2015) Nat Chem 7:905–923CrossRefGoogle Scholar
  12. 12.
    Rozhko E, Bavykina A, Osadchii D, Makkee M, Gascon J (2017) J Catal 345:270–280CrossRefGoogle Scholar
  13. 13.
    Zhang J, Peng Y, Leng W, Gao Y, Xu F, Chai J (2016) Chin J Catal 37(4):468–475CrossRefGoogle Scholar
  14. 14.
    Hariyanandam GG, Hyun D, Natarajan P, Jung K-D, Yoon S (2016) Catal Today 265:52–55CrossRefGoogle Scholar
  15. 15.
    Hou Y, Zhang X, Sun J, Lin S, Qi D, Hong R, Li D, Xiao X, Jiang J (2015) Microporous Mesoporous Mater 214:108–114CrossRefGoogle Scholar
  16. 16.
    Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y (2014) Angew Chem Int Ed 53(11):2878–2882CrossRefGoogle Scholar
  17. 17.
    Ding S-Y, Gao J, Wang Q, Zhang Y, Song W-G, Su C-Y, Wang W (2011) J Am Chem Soc 133(49):19816–19822CrossRefGoogle Scholar
  18. 18.
    Gonçalves RSB, de Oliveira ABV, Sindra HC, Archanjo BS, Mendoza ME, Carneiro LSA, Buarque CD, Esteves PM (2016) ChemCatChem 8(4):743–750CrossRefGoogle Scholar
  19. 19.
    Medlock J, Bonrath W (2013) Angew Chem Int Ed 52(21):5435–5435CrossRefGoogle Scholar
  20. 20.
    Busacca CA, Fandrick DR, Song JJ, Senanayake CH (2012) Application of transition metal catalysis in drug discovery and development. Wiley, Hoboken, pp 1–24CrossRefGoogle Scholar
  21. 21.
    Shang R, Ilies L, Nakamura E (2017) Chem Rev 117(13):9086–9139CrossRefGoogle Scholar
  22. 22.
    Fürstner A (2016) ACS Cent Sci 2(11):778–789CrossRefGoogle Scholar
  23. 23.
    Bauer I, Knölker H-J (2015) Chem Rev 115(9):3170–3387CrossRefGoogle Scholar
  24. 24.
    Huang Z, Jin L, Feng Y, Peng P, Yi H, Lei A (2013) Angew Chem Int Ed 52(28):7151–7155CrossRefGoogle Scholar
  25. 25.
    García Mancheño O (2011) Angew Chem Int Ed 50(10):2216–2218CrossRefGoogle Scholar
  26. 26.
    Plietker B, Dieskau A (2009) Eur J Org Chem 2009 6:775–787CrossRefGoogle Scholar
  27. 27.
    Bi H-P, Chen W-W, Liang Y-M, Li C-J (2009) Org Lett 11(15):3246–3249CrossRefGoogle Scholar
  28. 28.
    Salanouve E, Bouzemame G, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L (2014) Chem Eur J 20(16):4754–4761CrossRefGoogle Scholar
  29. 29.
    Zhao J, Zhou W, Han J, Li G, Pan Y (2013) Tetrahedron Lett 54(48):6507–6510CrossRefGoogle Scholar
  30. 30.
    Oveisi AR, Zhang K, Khorramabadi-zad A, Farha OK, Hupp JT (2015) Sci Rep 5:10621CrossRefGoogle Scholar
  31. 31.
    Rouchet J-BEY., Hachem M, Schneider C, Hoarau C (2017) ACS Catal 7(8):5363–5369CrossRefGoogle Scholar
  32. 32.
    Yang Z, Chen X, Liu J, Gui Q, Xie K, Li M, Tan Z (2013) Chem Comm 49(15):1560–1562CrossRefGoogle Scholar
  33. 33.
    Bi H-P, Zhao L, Liang Y-M, Li C-J (2009) Angew Chem Int Ed 48(4):792–795CrossRefGoogle Scholar
  34. 34.
    Perry GJP, Larrosa I (2017) Eur J Org Chem 2017 25:3517–3527CrossRefGoogle Scholar
  35. 35.
    Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, Gironcoli SD, Delugas P, DiStasio RA, Ferretti J, Floris A, Fratesi A, Fugallo G, Gebauer G, Gerstmann R, Giustino U, Gorni F, Jia T, Kawamura J, Ko M, Kokalj HY, Küçükbenli A, Lazzeri E, Marsili M, Marzari M, Mauri N, Nguyen F, Nguyen NL, Otero-de-la-Roza HV, Paulatto A, Poncé L, Rocca S, Sabatini D, Santra R, Schlipf B, Seitsonen M, Smogunov AP, Timrov A, Thonhauser I, Umari T, Vast P, Wu N, Baroni XS (2017) J Phys: Condens Matter 29(46):465901Google Scholar
  36. 36.
    Vanderbilt D (1990) Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  37. 37.
    Sastre G, Corma A (2009) J Mol Catal A: Chem 305(1):3–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaPontificia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Centro de TecnologiaRio de JaneiroBrazil

Personalised recommendations