Skip to main content
Log in

Ligand Effects on the Reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) Towards CO2: Gas-Phase Generation of the Elusive Cyanoformate by [Co(CN)]+ and [Fe(CN)]+

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The thermal reactions of [CoX]+ (X = CN, F, Cl, Br, O, OH) with carbon dioxide have been investigated experimentally and theoretically by using electrospray ionization mass spectrometry (ESI-MS) and density functional theory. Surprisingly, in contrast to the complete inertness of [CoX]+ (X = F, Cl, Br, O, OH) toward carbon dioxide, [Co(CN)]+ activates carbon dioxide to form the elusive [NCCO2Co]+ ion in the gas phase. Mechanistic investigation into this ligand-controlled CO2 activation via C_C bond formation, mediated by a first-row late transition-metal complex, reveals that the inertness of [CoX]+ (X = F, Cl, Br, O, OH) is due to kinetic barriers located above the entrance asymptote. The exception is the [Co(CN)]+/CO2 couple, for which the thermal C–C bond formation is both thermochemically and kinetically accessible. Interestingly, a cyanoformate ligand is most likely also formed in the reaction of [Fe(CN)]+ with CO2; cyanoformate formation had been suggested earlier as a protective mechanism to prevent cyanide complexation to the iron-containing active site of the enzyme ACC oxidase (Murphy et al., in Science 344:75–78, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Munday PL (2017) Biol Lett 13. https://doi.org/10.1098/rsbl.2017.0438

  2. Zickfeld K, Solomon S, Gilford DM (2017) Proc Natl Acad Sci USA 114:657–662

    Article  CAS  PubMed  Google Scholar 

  3. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Angew Chem Int Ed 50:8510–8537

    Article  CAS  Google Scholar 

  4. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ (2013) Chem Rev 113:6621–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aresta M, Dibenedetto A, Angelini A (2014) Chem Rev 114:1709–1742

    Article  CAS  PubMed  Google Scholar 

  6. Grice KA (2017) Coord Chem Rev 336:78–95

    Article  CAS  Google Scholar 

  7. Havran V, Duduković MP, Lo CS (2011) Ind Eng Chem Res 50:7089–7100

    Article  CAS  Google Scholar 

  8. Wang M-Y, Cao Y, Liu X, Wang N, He L-N, Li S-H (2017) Green Chem 19:1240–1244

    Article  CAS  Google Scholar 

  9. Schuchmann K, Müller V (2013) Science 342:1382–1385

    Article  CAS  PubMed  Google Scholar 

  10. Yin X, Moss JR (1999) Coord Chem Rev 181:27–59

    Article  CAS  Google Scholar 

  11. Olah GA, Török B, Joschek JP, Bucsi I, Esteves PM, Rasul G, Prakash GKS (2002) J Am Chem Soc 124:11379–11391

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Wu L, Jackstell R, Beller M (2015) Nat Commun 6:5933

    Article  CAS  PubMed  Google Scholar 

  13. Song Q-W, Zhou Z-H, He L-N (2017) Green Chem 19:3707–3728

    Article  CAS  Google Scholar 

  14. Hull JF, Himeda Y, Wang W-H, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Nat Chem 4:383–388

    Article  CAS  PubMed  Google Scholar 

  15. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Chem Rev 112:724–781

    Article  CAS  PubMed  Google Scholar 

  16. Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) Chem Rev 115:12936–12973

    Article  CAS  PubMed  Google Scholar 

  17. Aresta M, Dibenedetto A, Quaranta E (2016) J Catal 343:2–45

    Article  CAS  Google Scholar 

  18. Alper E, Yuksel Orhan O (2017) Petroleum 3:109–126

    Article  Google Scholar 

  19. Jeletic MS, Mock MT, Appel AM, Linehan JC (2013) J Am Chem Soc 135:11533–11536

    Article  CAS  PubMed  Google Scholar 

  20. Schneider J, Jia H, Muckerman JT, Fujita E (2012) Chem Soc Rev 41:2036–2051

    Article  CAS  PubMed  Google Scholar 

  21. Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Chem Eur J 18:72–75

    Article  CAS  PubMed  Google Scholar 

  22. Badiei YM, Wang W-H, Hull JF, Szalda DJ, Muckerman JT, Himeda Y, Fujita E (2013) Inorg Chem 52:12576–12586

    Article  CAS  PubMed  Google Scholar 

  23. Zeikus J, Kerby R, Krzycki J (1985) Science 227:1167–1173

    Article  CAS  PubMed  Google Scholar 

  24. Pirrung MC (1999) Acc Chem Res 32:711–718

    Article  CAS  Google Scholar 

  25. Murphy LJ, Robertson KN, Harroun SG, Brosseau CL, Werner-Zwanziger U, Moilanen J, Tuononen HM, Clyburne JAC (2014) Science 344:75–78

    Article  CAS  PubMed  Google Scholar 

  26. Hering C, von Langermann J, Schulz A (2014) Angew Chem Int Ed 53:8282–8284

    Article  CAS  Google Scholar 

  27. Braga D, D’Oria E, Grepioni F, Mota F, Novoa JJ, Rovira C (2002) Chem Eur J 8:1173–1180

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Gross U, Seppelt K (1995) Angew Chem Int Ed Engl 34:1858–1860

    Article  CAS  Google Scholar 

  29. Schwarz H (2017) Coord Chem Rev 334:112–123

    Article  CAS  Google Scholar 

  30. Koyanagi GK, Bohme DK (2006) J Phys Chem A 110:1232–1241

    Article  CAS  PubMed  Google Scholar 

  31. Tang S-Y, Rijs NJ, Li J, Schlangen M, Schwarz H (2015) Chem Eur J 21:8483–8490

    Article  CAS  PubMed  Google Scholar 

  32. Li J, González-Navarrete P, Schlangen M, Schwarz H (2015) Chem Eur J 21:7780–7789

    Article  CAS  PubMed  Google Scholar 

  33. Firouzbakht M, Rijs NJ, González-Navarrete P, Schlangen M, Kaupp M, Schwarz H (2016) Chem Eur J 22:10581–10589

    Article  CAS  PubMed  Google Scholar 

  34. Firouzbakht M, Schlangen M, Kaupp M, Schwarz H (2016) J Catal 343:68–74

    Article  CAS  Google Scholar 

  35. Jiang L-X, Zhao C, Li X-N, Chen H, He S-G (2017) Angew Chem Int Ed 56:4187–4191

    Article  CAS  Google Scholar 

  36. Zhang X, Liu G, Meiwes-Broer K-H, Ganteför G, Bowen K (2016) Angew Chem Int Ed 55:9644–9647

    Article  CAS  Google Scholar 

  37. Zhou S, Li J, Firouzbakht M, Schlangen M, Schwarz H (2017) J Am Chem Soc 139:6169–6176

    Article  CAS  PubMed  Google Scholar 

  38. Schröder D, Schwarz H, Schenk S, Anders E (2003) Angew Chem Int Ed 42:5087–5090

    Article  CAS  Google Scholar 

  39. Trage C, Schröder D, Schwarz H (2005) Chem Eur J 11:619–627

    Article  CAS  PubMed  Google Scholar 

  40. Schröder D, Roithová J, Schwarz H (2006) Int J Mass Spectrom 254:197–201

    Article  CAS  Google Scholar 

  41. Scientific Instrument Service: Isotope Distribution Calculator and Mass Spec Plotter. http://www.sisweb.com/mstools/isotope.htm

  42. Schröder D, Engeser M, Schwarz H, Rosenthal ECE, Döbler J, Sauer J (2006) Inorg Chem 45:6235–6245

    Article  CAS  PubMed  Google Scholar 

  43. Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X, Asmis KR, Schwarz H (2013) J Am Chem Soc 135:3711–3721

    Article  CAS  PubMed  Google Scholar 

  44. Rijs NJ, Weiske T, Schlangen M, Schwarz H (2014) Chem Phys Lett 608:408–424

    Article  CAS  Google Scholar 

  45. Rijs NJ, Weiske T, Schlangen M, Schwarz H (2015) Anal Chem 87:11601–11601

    Article  CAS  PubMed  Google Scholar 

  46. Levsen K, Schwarz H (1983) Mass Spectrom Rev 2:77–148

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc Wallingford CT

  48. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  50. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  51. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chem Acc 77:123–141

    Article  CAS  Google Scholar 

  52. Huo C-F, Li Y-W, Wu G-S, Beller M, Jiao H (2002) J Phys Chem A 106:12161–12169

    Article  CAS  Google Scholar 

  53. Huo C-F, Zeng T, Li Y-W, Beller M, Jiao H (2005) Organometallics 24:6037–6042

    Article  CAS  Google Scholar 

  54. Rayón VM, Redondo P, Valdés H, Barrientos C, Largo A (2007) J Phys Chem A 111:6334–6344

    Article  CAS  PubMed  Google Scholar 

  55. Yuan J, Wang S, Si Y, Yang B, Chen H (2014) Dalton Trans 43:5516–5525

    Article  CAS  PubMed  Google Scholar 

  56. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  57. Truhlar DG, Kilpatrick NJ, Garrett BC (1983) J Chem Phys 78:2438–2442

    Article  CAS  Google Scholar 

  58. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  59. Foster J, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  60. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  61. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  62. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  63. Cassady CJ, Freiser BS (1984) J Am Chem Soc 106:6176–6179

    Article  CAS  Google Scholar 

  64. Griffith WP (1962) Q Rev Chem Soc 16:188–207

    Article  CAS  Google Scholar 

  65. Naota T, Tannna A, Kamuro S, Hieda M, Ogata K, Murahashi S-I, Takaya H (2008) Chem Eur J 14:2482–2498

    Article  CAS  PubMed  Google Scholar 

  66. Li J, Khairallah GN, Steinmetz V, Maitre P, O’Hair RAJ (2015) Dalton Trans 44:9230–9240

    Article  CAS  PubMed  Google Scholar 

  67. Schneider F, Rabinovitch B (1962) J Am Chem Soc 84:4215–4230

    Article  CAS  Google Scholar 

  68. Van Dine GW, Hoffmann R (1968) J Am Chem Soc 90:3227–3232

    Article  Google Scholar 

  69. Alvarez S, Lopez C (1982) Inorg Chim Acta 64:L99-L100

    Article  Google Scholar 

  70. Fehlhammer WP, Fritz M (1993) Chem Rev 93:1243–1280

    Article  CAS  Google Scholar 

  71. Zhu N, Vahrenkamp H (1994) Angew Chem Int Ed 33:2090–2091

    Article  Google Scholar 

  72. Coppola A, Sánchez-Alonso P, Sucunza D, Burgos C, Alajarín R, Alvarez-Builla J, Mosquera MEG, Vaquero JJ (2013) Org Lett 15:3388–3391

    Article  CAS  PubMed  Google Scholar 

  73. Murahashi S-I, Komiya N, Terai H, Nakae T (2003) J Am Chem Soc 125:15312–15313

    Article  CAS  PubMed  Google Scholar 

  74. Murahashi S-I, Komiya N, Terai H (2005) Angew Chem Int Ed 44:6931–6933

    Article  CAS  Google Scholar 

  75. Murahashi S-I, Nakae T, Terai H, Komiya N (2008) J Am Chem Soc 130:11005–11012

    Article  CAS  PubMed  Google Scholar 

  76. Han W, Ofial AR (2009) Chem Commun 0:5024–5026

    Article  CAS  Google Scholar 

  77. Singhal S, Jain SL, Sain B (2009) Chem Commun 0:2371–2372

    Article  CAS  Google Scholar 

  78. Anbarasan P, Neumann H, Beller M (2011) Angew Chem Int Ed 50:519–522

    Article  CAS  Google Scholar 

  79. Pellissier H (2015) Adv Synth Catal 357:857–882

    Article  CAS  Google Scholar 

  80. Zeng X-P, Cao Z-Y, Wang X, Chen L, Zhou F, Zhu F, Wang C-H, Zhou J (2016) J Am Chem Soc 138:416–425

    Article  CAS  PubMed  Google Scholar 

  81. Jiang W, Yang J, Liu Y-Y, Song S-Y, Ma J-F (2017) Inorg Chem 56:3036–3043

    Article  CAS  PubMed  Google Scholar 

  82. Song B, Xu B (2017) Chem Soc Rev 46:1103–1123

    Article  CAS  PubMed  Google Scholar 

  83. Dunbar RC, Klippenstein SJ, Hrušák J, Stöckigt D, Schwarz H (1996) J Am Chem Soc 118:5277–5283

    Article  CAS  Google Scholar 

  84. Schröder D, Schwarz H (2008) Proc Natl Acad Sci USA 105:18114–18119

    Article  PubMed  Google Scholar 

  85. Praneeth VKK, Ringenberg MR, Ward TR (2012) Angew Chem Int Ed 51:10228–10234

    Article  CAS  Google Scholar 

  86. Schröder D, Schwarz H (2005) Can J Chem 83:1936–1940

    Article  Google Scholar 

  87. Dossmann H, Afonso C, Lesage D, Tabet J-C, Uggerud E (2012) Angew Chem Int Ed 51:6938–6941

    Article  CAS  Google Scholar 

  88. Ryutaro T (1938) Bull Chem Soc Jpn 13:388–400

    Article  Google Scholar 

  89. Griffith JS, Orgel LE (1957) Q Rev Chem Soc 11:381–393

    Article  CAS  Google Scholar 

  90. Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Chem Rev 118:434–504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (DFG), and the Cluster of Excellence “Unifying Concepts in Catalysis” (coordinated by the Technische Universität Berlin and funded by the DFG). NJR gratefully acknowledges support from the QUT Institute for Future Environments (IFE) and the Australian Research Council (ARC) for an ARC Discovery Early Career Researcher Award (DECRA) (project number DE170100677). For computational resources, the Institut für Mathematik at the Technische Universität Berlin is acknowledged. Dr. Shaodong Zhou is appreciated for suggestions and comments. We thank Andrea Beck and Dr. Thomas Weiske for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Kaupp or Helmut Schwarz.

Ethics declarations

Conflict of interest

This manuscript has not been submitted elsewhere for consideration, and the authors declare not competing financial interests.

Additional information

In memoriam Professor George A. Olah.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 279 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzbakht, M., Rijs, N.J., Schlangen, M. et al. Ligand Effects on the Reactivity of [CoX]+ (X = CN, F, Cl, Br, O, OH) Towards CO2: Gas-Phase Generation of the Elusive Cyanoformate by [Co(CN)]+ and [Fe(CN)]+. Top Catal 61, 575–584 (2018). https://doi.org/10.1007/s11244-018-0903-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0903-8

Keywords

Navigation