Orbital Physics of Perovskites for the Oxygen Evolution Reaction

Abstract

The study of magnetic perovskite oxides has led to novel and very active compounds for O2 generation and other energy applications. Focusing on three different case studies, we summarise the bulk electronic and magnetic properties that initially serve to classify active perovskite catalysts for the oxygen evolution reaction (OER). Ab-initio calculations centred on the orbital physics of the electrons in the d-shell provide a unique insight into the complex interplay between spin dependent interactions versus selectivity and OER reactivity that occurs in these transition-metal oxides. We analyse how the spin, orbital and lattice degrees of freedom establish rational design principles for OER. We observe that itinerant magnetism serves as an indicator for highly active oxygen electro-catalysts. Optimum active sites individually have a net magnetic moment, giving rise to exchange interactions which are collectively ferromagnetic, indicative of spin dependent transport. In particular, optimum active sites for OER need to possess sufficient empty orthogonal orbitals, oriented towards the ligands, to preserve an incoming spin aligned electron flow. Calculations from first principles open up the possibility of anticipating materials with improved electro-catalytic properties, based on orbital engineering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Science 324:1183–1186

    CAS  Article  Google Scholar 

  2. 2.

    Armand M, Tarascon J-M (2008) Nature 451:652–657

    CAS  Article  Google Scholar 

  3. 3.

    Koper MTM (2011) J Electroanal Chem 660:254–260

    CAS  Article  Google Scholar 

  4. 4.

    Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940

    CAS  Article  Google Scholar 

  5. 5.

    Gracia J, Escuin M, Mallada R, Navascues N, Santamaria J (2016) Nano Energy 20:20–28

    CAS  Article  Google Scholar 

  6. 6.

    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385

    CAS  Article  Google Scholar 

  7. 7.

    Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) J Phys Chem Lett 3:399–404

    CAS  Article  Google Scholar 

  8. 8.

    Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:2439

    Article  Google Scholar 

  9. 9.

    Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J (2014) Angew Chem Int Ed Engl 53:4582–4586

    CAS  Article  Google Scholar 

  10. 10.

    Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M (2017) Nat Commun 8:14586

    CAS  Article  Google Scholar 

  11. 11.

    Sapountzi FM, Gracia JM, Westrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Prog Energy Combust Sci 58:1–35

    Article  Google Scholar 

  12. 12.

    Terasaki I, Kobayashi W (2007) Prog Solid State Chem 35:439–445

    CAS  Article  Google Scholar 

  13. 13.

    Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397–426

    CAS  Article  Google Scholar 

  14. 14.

    Bockris JO, Otagawa T (1984) J Electrochem Soc 131:290

    CAS  Article  Google Scholar 

  15. 15.

    Arnold EW, Sundaresan S (1987) Chem Eng Commun 58:213–230

    CAS  Article  Google Scholar 

  16. 16.

    Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165

    CAS  Article  Google Scholar 

  17. 17.

    Vojvodic A, Norskov J (2011) Science 334:1355–1356

    CAS  Article  Google Scholar 

  18. 18.

    Gracia J (2017) Phys Chem Chem Phys 19:20451–20456

    CAS  Article  Google Scholar 

  19. 19.

    Lim T, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:2968–2974

    CAS  Article  Google Scholar 

  20. 20.

    Sharpe R, Lim T, Jiao Y, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:3762–3768

    CAS  Article  Google Scholar 

  21. 21.

    Gracia J, Munarriz J, Polo V, Sharpe R, Jiao Y, Niemantsverdriet JW, Lim T (2017) ChemCatChem. https://doi.org/10.1002/cctc.201700302

    Article  Google Scholar 

  22. 22.

    Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Adv Mater 27:5989–5994

    CAS  Article  Google Scholar 

  23. 23.

    Goodenough JB (2004) Rep Prog Phys 67:1915–1993

    CAS  Article  Google Scholar 

  24. 24.

    Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS (2004) J Phys: Condens Matter 16:8035–8041

    CAS  Google Scholar 

  25. 25.

    Mizumaki M, Chen WT, Saito T, Yamada I, Attfield JP, Shimakawa Y (2011) Phys Rev B 84:94418

    Article  Google Scholar 

  26. 26.

    Shimakawa Y, Takano M (2009) Z Anorg Allg Chem 635:1882–1889

    CAS  Article  Google Scholar 

  27. 27.

    Yamada I (2014) J Ceram Soc Jpn 122:846–851

    Article  Google Scholar 

  28. 28.

    Hombo J, Matsumoto Y, Kawano T (1990) J Solid State Chem 84:138–143

    CAS  Article  Google Scholar 

  29. 29.

    Takeda Y, Naka S, Takano M, Shinjo T, Takada T, Shimada M (1978) Mater Res Bull 13:61–66

    CAS  Article  Google Scholar 

  30. 30.

    Takano M, Nakanishi N, Takeda Y, Naka S, Takada T (1977) Mater Res Bull 12:923–928

    CAS  Article  Google Scholar 

  31. 31.

    Takeda T, Yamaguchi Y, Watanabe H (1972) J Phys Soc Jpn 33:967–969

    CAS  Article  Google Scholar 

  32. 32.

    Alexandrov VE, Kotomin EA, Maier J, Evarestov RA (2008) J Chem Phys 129:214704

    CAS  Article  Google Scholar 

  33. 33.

    Torrance J, Lacorre P, Nazzal A, Ansaldo E, Niedermayer C (1992) Phys Rev B 45:8209–8212

    CAS  Article  Google Scholar 

  34. 34.

    Hong WT, Welsch RE, Shao-Horn Y (2016) J Phys Chem C 120:78–86

    CAS  Article  Google Scholar 

  35. 35.

    Zhu M, Komissinskiy P, Radetinac A, Vafaee M, Wang Z, Alff L (2013) Appl Phys Lett 103:141902

    Article  Google Scholar 

  36. 36.

    Goodenough JB, Zhou J-S (1998) Chem Mater 10:2980–2993

    CAS  Article  Google Scholar 

  37. 37.

    Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F, Trounov V (1998) Phys Rev B 57:456–464

    Article  Google Scholar 

  38. 38.

    Alonso JA, Martínez-Lope MJ, Rasines I (1995) J Solid State Chem 120:170–174

    CAS  Article  Google Scholar 

  39. 39.

    Prodi A, Gilioli E, Cabassi R, Bolzoni F, Licci F, Huang Q, Lynn JW, Affronte M, Gauzzi A, Marezio M (2009) Phys Rev B 79:85105

    Article  Google Scholar 

  40. 40.

    Liu XJ, Lv SH, Pan E, Meng J, Albrecht JD (2010) J Phys Condens Matter 22:246001

    CAS  Article  Google Scholar 

  41. 41.

    Yamada I, Fujii H, Takamatsu A, Ikeno H, Wada K, Tsukasaki H, Kawaguchi S, Mori S, Yagi S (2017) Adv Mater 29:1603004

    Article  Google Scholar 

  42. 42.

    Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C (2012) Phys Rev Lett 108:67201

    CAS  Article  Google Scholar 

  43. 43.

    Perks NJ, Johnson RD, Martin C, Chapon LC, Radaelli PG (2012) Nat Commun 3:1277

    CAS  Article  Google Scholar 

  44. 44.

    Musa Saad H-E M (2017) J Sci Adv Mater Devices 2:115–122

    Article  Google Scholar 

  45. 45.

    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    CAS  Article  Google Scholar 

  46. 46.

    Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    CAS  Article  Google Scholar 

  47. 47.

    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    CAS  Article  Google Scholar 

  48. 48.

    Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  49. 49.

    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    CAS  Article  Google Scholar 

  50. 50.

    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406

    Article  Google Scholar 

  51. 51.

    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    CAS  Article  Google Scholar 

  52. 52.

    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276

    CAS  Article  Google Scholar 

  53. 53.

    Yamada I, Shiro K, Etani H, Marukawa S, Hayashi N, Mizumaki M, Kusano Y, Ueda S, Abe H, Irifune T (2014) Inorg Chem 53:10563–10569

    CAS  Article  Google Scholar 

  54. 54.

    Li Z, Tse JS, You S, Jin CQ, Iitaka T (2011) Int J Mod Phys B 25:3409–3414

    CAS  Article  Google Scholar 

  55. 55.

    Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107

    Article  Google Scholar 

Download references

Acknowledgements

JM and VP express their appreciation to the financial support of MINECO/FEDER project CTQ2015-67366-P and from the MECD (FPU14/06003), respectively. In addition, the resources from the supercomputer “memento”, technical expertise and assistance provided by BIFI-ZCAM (Universidad de Zaragoza) are acknowledged. RS, TB, YJ, JWN and JG acknowledge financial support from Synfuels China Technology Co. Ltd.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ryan Sharpe or Jose Gracia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharpe, R., Munarriz, J., Lim, T. et al. Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Top Catal 61, 267–275 (2018). https://doi.org/10.1007/s11244-018-0895-4

Download citation

Keywords

  • Oxygen evolution reaction
  • Perovskites
  • Orbital engineering
  • Orbital physics
  • Exchange interactions
  • Electrocatalysis