Abstract
The study of magnetic perovskite oxides has led to novel and very active compounds for O2 generation and other energy applications. Focusing on three different case studies, we summarise the bulk electronic and magnetic properties that initially serve to classify active perovskite catalysts for the oxygen evolution reaction (OER). Ab-initio calculations centred on the orbital physics of the electrons in the d-shell provide a unique insight into the complex interplay between spin dependent interactions versus selectivity and OER reactivity that occurs in these transition-metal oxides. We analyse how the spin, orbital and lattice degrees of freedom establish rational design principles for OER. We observe that itinerant magnetism serves as an indicator for highly active oxygen electro-catalysts. Optimum active sites individually have a net magnetic moment, giving rise to exchange interactions which are collectively ferromagnetic, indicative of spin dependent transport. In particular, optimum active sites for OER need to possess sufficient empty orthogonal orbitals, oriented towards the ligands, to preserve an incoming spin aligned electron flow. Calculations from first principles open up the possibility of anticipating materials with improved electro-catalytic properties, based on orbital engineering.
This is a preview of subscription content, access via your institution.





References
- 1.
Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Science 324:1183–1186
- 2.
Armand M, Tarascon J-M (2008) Nature 451:652–657
- 3.
Koper MTM (2011) J Electroanal Chem 660:254–260
- 4.
Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) ACS Catal 4:2917–2940
- 5.
Gracia J, Escuin M, Mallada R, Navascues N, Santamaria J (2016) Nano Energy 20:20–28
- 6.
Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383–1385
- 7.
Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) J Phys Chem Lett 3:399–404
- 8.
Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:2439
- 9.
Jung J-I, Jeong HY, Lee J-S, Kim MG, Cho J (2014) Angew Chem Int Ed Engl 53:4582–4586
- 10.
Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X, Liu M (2017) Nat Commun 8:14586
- 11.
Sapountzi FM, Gracia JM, Westrate CJ, Fredriksson HOA, Niemantsverdriet JW (2017) Prog Energy Combust Sci 58:1–35
- 12.
Terasaki I, Kobayashi W (2007) Prog Solid State Chem 35:439–445
- 13.
Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397–426
- 14.
Bockris JO, Otagawa T (1984) J Electrochem Soc 131:290
- 15.
Arnold EW, Sundaresan S (1987) Chem Eng Commun 58:213–230
- 16.
Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165
- 17.
Vojvodic A, Norskov J (2011) Science 334:1355–1356
- 18.
Gracia J (2017) Phys Chem Chem Phys 19:20451–20456
- 19.
Lim T, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:2968–2974
- 20.
Sharpe R, Lim T, Jiao Y, Niemantsverdriet JW, Gracia J (2016) ChemCatChem 8:3762–3768
- 21.
Gracia J, Munarriz J, Polo V, Sharpe R, Jiao Y, Niemantsverdriet JW, Lim T (2017) ChemCatChem. https://doi.org/10.1002/cctc.201700302
- 22.
Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Adv Mater 27:5989–5994
- 23.
Goodenough JB (2004) Rep Prog Phys 67:1915–1993
- 24.
Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS (2004) J Phys: Condens Matter 16:8035–8041
- 25.
Mizumaki M, Chen WT, Saito T, Yamada I, Attfield JP, Shimakawa Y (2011) Phys Rev B 84:94418
- 26.
Shimakawa Y, Takano M (2009) Z Anorg Allg Chem 635:1882–1889
- 27.
Yamada I (2014) J Ceram Soc Jpn 122:846–851
- 28.
Hombo J, Matsumoto Y, Kawano T (1990) J Solid State Chem 84:138–143
- 29.
Takeda Y, Naka S, Takano M, Shinjo T, Takada T, Shimada M (1978) Mater Res Bull 13:61–66
- 30.
Takano M, Nakanishi N, Takeda Y, Naka S, Takada T (1977) Mater Res Bull 12:923–928
- 31.
Takeda T, Yamaguchi Y, Watanabe H (1972) J Phys Soc Jpn 33:967–969
- 32.
Alexandrov VE, Kotomin EA, Maier J, Evarestov RA (2008) J Chem Phys 129:214704
- 33.
Torrance J, Lacorre P, Nazzal A, Ansaldo E, Niedermayer C (1992) Phys Rev B 45:8209–8212
- 34.
Hong WT, Welsch RE, Shao-Horn Y (2016) J Phys Chem C 120:78–86
- 35.
Zhu M, Komissinskiy P, Radetinac A, Vafaee M, Wang Z, Alff L (2013) Appl Phys Lett 103:141902
- 36.
Goodenough JB, Zhou J-S (1998) Chem Mater 10:2980–2993
- 37.
Rodríguez-Carvajal J, Rosenkranz S, Medarde M, Lacorre P, Fernandez-Díaz M, Fauth F, Trounov V (1998) Phys Rev B 57:456–464
- 38.
Alonso JA, Martínez-Lope MJ, Rasines I (1995) J Solid State Chem 120:170–174
- 39.
Prodi A, Gilioli E, Cabassi R, Bolzoni F, Licci F, Huang Q, Lynn JW, Affronte M, Gauzzi A, Marezio M (2009) Phys Rev B 79:85105
- 40.
Liu XJ, Lv SH, Pan E, Meng J, Albrecht JD (2010) J Phys Condens Matter 22:246001
- 41.
Yamada I, Fujii H, Takamatsu A, Ikeno H, Wada K, Tsukasaki H, Kawaguchi S, Mori S, Yagi S (2017) Adv Mater 29:1603004
- 42.
Johnson RD, Chapon LC, Khalyavin DD, Manuel P, Radaelli PG, Martin C (2012) Phys Rev Lett 108:67201
- 43.
Perks NJ, Johnson RD, Martin C, Chapon LC, Radaelli PG (2012) Nat Commun 3:1277
- 44.
Musa Saad H-E M (2017) J Sci Adv Mater Devices 2:115–122
- 45.
Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269
- 46.
Kresse G, Hafner J (1993) Phys Rev B 47:558–561
- 47.
Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186
- 48.
Blöchl PE (1994) Phys Rev B 50:17953–17979
- 49.
Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775
- 50.
Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406
- 51.
Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509
- 52.
Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276
- 53.
Yamada I, Shiro K, Etani H, Marukawa S, Hayashi N, Mizumaki M, Kusano Y, Ueda S, Abe H, Irifune T (2014) Inorg Chem 53:10563–10569
- 54.
Li Z, Tse JS, You S, Jin CQ, Iitaka T (2011) Int J Mod Phys B 25:3409–3414
- 55.
Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107
Acknowledgements
JM and VP express their appreciation to the financial support of MINECO/FEDER project CTQ2015-67366-P and from the MECD (FPU14/06003), respectively. In addition, the resources from the supercomputer “memento”, technical expertise and assistance provided by BIFI-ZCAM (Universidad de Zaragoza) are acknowledged. RS, TB, YJ, JWN and JG acknowledge financial support from Synfuels China Technology Co. Ltd.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Sharpe, R., Munarriz, J., Lim, T. et al. Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Top Catal 61, 267–275 (2018). https://doi.org/10.1007/s11244-018-0895-4
Published:
Issue Date:
Keywords
- Oxygen evolution reaction
- Perovskites
- Orbital engineering
- Orbital physics
- Exchange interactions
- Electrocatalysis