Topics in Catalysis

, Volume 61, Issue 1–2, pp 126–135 | Cite as

Size-Effect on Electrochemical Hydrogen Evolution Reaction by Single-Size Platinum Nanocluster Catalysts Immobilized on Strontium Titanate

  • Hironori Tsunoyama
  • Yohei Yamano
  • Chuhang Zhang
  • Masafumi Komori
  • Toyoaki Eguchi
  • Atsushi Nakajima
Original Paper
  • 152 Downloads

Abstract

Size-specific chemical properties of metal nanoclusters (NCs) have motivated their applications in catalysis, whose properties were found to be dramatically different from bulk materials. We have reported herein the size-dependent activity of platinum (Pt) NCs for the electrochemical hydrogen-evolution-reaction (HER) in neutral water. The single-size NC catalysts were prepared by the soft-landing of mass-selected Pt NCs on a strontium titanate (SrTiO3) (100) surface using an intensive, size-selective NC source based on high-power impulse magnetron sputtering. Successful fabrications of single-size Pt NC catalysts were confirmed with scanning tunneling microscopy. It was found from electrochemical measurements that catalytic HER activity per unit Pt shows a maximum at Pt30 in the range of n = 1–45. Taking into account the electron affinities of Pt NCs measured by gas-phase anion photoelectron spectroscopy, the reaction mechanism of HER is deduced: the size-specific HER activity originates from the matching of energy levels of Pt NCs with the band structure of SrTiO3 surfaces.

Keywords

Hydrogen evolution reaction (HER) Nanocluster catalyst Magnetron sputtering Size-selected nanocluster Electrochemistry 

Notes

Acknowledgements

The work is partly supported by JSPS KAKENHI of Grant-in-Aid for Scientific Research (A) grant no. 15H02002 and for Young Scientists (A) Grant No. 15H05475, and by JSPS KAKENHI of Challenging Research (Pioneering) Grant No. 17H06226.

Supplementary material

11244_2018_884_MOESM1_ESM.docx (789 kb)
Supplementary material 1 (DOCX 789 KB)

References

  1. 1.
    Whetten R, Cox D, Trevor D, Kaldor A (1985) Correspondence between electron binding energy and chemisorption reactivity of iron clusters. Phys Rev Lett 54:1494–1497CrossRefGoogle Scholar
  2. 2.
    Jarrold MF, Bower JE (1987) A detailed study of the reactions between size selected aluminum cluster ions, Aln + (n = 3–26), and oxygen. J Chem Phys 87:5728–5739CrossRefGoogle Scholar
  3. 3.
    Nakajima A, Kishi T, Sugioka T, Sone Y, Kaya K (1991) Structure and reactivity of bimetallic ConVm + cluster ions. J Phys Chem 95:6833–6835CrossRefGoogle Scholar
  4. 4.
    Persson JL, Andersson M, Rosén. A (1993) Reactivity of small transition metal clusters. Z Phys D 26:334–336CrossRefGoogle Scholar
  5. 5.
    Castleman AW Jr, Wei S (1994) Cluster reactions. Annu Rev Phys Chem 45:685–719CrossRefGoogle Scholar
  6. 6.
    Ichihashi M, Hanmura T, Yadav RT, Kondow T (2000) Adsorption and reaction of methanol molecule on nickel cluster ions, Nin + (n = 3–11). J Phys Chem A 104:11885–11890CrossRefGoogle Scholar
  7. 7.
    Armentrout PB (2001) Reaction and thermochemistry of small transition metal cluster ions. Annu Rev Phys Chem 52:423–461CrossRefGoogle Scholar
  8. 8.
    Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499–7505CrossRefGoogle Scholar
  9. 9.
    Fielicke A, von Helden G, Meijer G, Pedersen DB, Simard B, Rayner DM (2005) Gold cluster carbonyls: saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures. J Am Chem Soc 127:8416–8423CrossRefGoogle Scholar
  10. 10.
    Lang SM, Bernhardt TM (2012) Gas phase metal cluster model systems for heterogeneous catalysis. Phys Chem Chem Phys 14:9255–9269CrossRefGoogle Scholar
  11. 11.
    Asmis KR (2012) Structure characterization of metal oxide clusters by vibrational spectroscopy: possibilities and prospects. Phys Chem Chen Phys 14:9270–9281CrossRefGoogle Scholar
  12. 12.
    Harding DJ, Fielicke A (2014) Platinum group metal clusters: from gas-phase structures and reactivities towards model catalysts. Chem Eur J 20:3258–3267CrossRefGoogle Scholar
  13. 13.
    Luo Z, Castleman AW Jr, Khanna SN (2016) Reactivity of metal clusters. Chem Rev 116:14456–14492CrossRefGoogle Scholar
  14. 14.
    Ferrari P, Molina LM, Kaydashev VE, Alonso JA, Lievens P, Janssens E (2016) Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification. Angew Chem Int Ed 55:11059–11063CrossRefGoogle Scholar
  15. 15.
    Neuwirth D, Eckhard JF, Visser BR, Tschurl M, Heiz U (2016) Two reaction regimes in the oxidation of larger cationic tantalum clusters (Tan +, n = 13–40) under multi-collision conditions. Phys Chem Chen Phys 18:8115–8119CrossRefGoogle Scholar
  16. 16.
    Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett RN, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578CrossRefGoogle Scholar
  17. 17.
    Judai K, Sera K, Amatsutsumi S, Yagi K, Yasuike T, Yabushita S, Nakajima A, Kaya K (2001) A soft-landing experiment on organometallic cluster ions: infrared spectroscopy of V(benzene)2 in Ar matrix. Chem Phys Lett 334:277–284CrossRefGoogle Scholar
  18. 18.
    Palmer RE, Pratontep S, Boyen H-G (2003) Nanostructures surfaces from size-selected clusters. Nat Mater 2:443–448CrossRefGoogle Scholar
  19. 19.
    Heiz U, Landman U (2007) Nanocatalysis. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Polshettiwar V, Asefa T (eds) (2013) Nanocatalysis: synthesis and applications. Wiley, HobokenGoogle Scholar
  21. 21.
    Johnson GE, Colby R, Laskin J (2015) Soft landing of bare nanoparticles with controlled size, composition, and morphology. Nanoscale 7:3491–3503CrossRefGoogle Scholar
  22. 22.
    Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti J-M, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–407CrossRefGoogle Scholar
  23. 23.
    Schweinberger FF, Berr MJ, Döblinger M, Wolff C, Sanwald KE, Crampton AS, Ridge CJ, Jäckel F, Feldmann J, Tschurl M, Heiz U (2013) Cluster size effects in the photocatalytic hydrogen evolution reaction. J Am Chem Soc 135:13262–13265CrossRefGoogle Scholar
  24. 24.
    Rondelli M, Zwaschka G, Krause M, Rötzer MD, Hedhili MN, Högerl MP, D’Elia V, Schweinberger FF, Basset J-M, Heiz U (2017) Exploring the potential of different-sized supported subnanometer Pt clusters as catalysts for wet chemical applications. ACS Catal 7:4152–4162CrossRefGoogle Scholar
  25. 25.
    Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829CrossRefGoogle Scholar
  26. 26.
    Habibpour V, Song MY, Wang ZW, Cookson J, Brown CM, Bishop PT, Palmer RE (2012) Novel powder-supported size-selected clusters for heterogeneous catalysis under realistic reaction conditions. J Phys Chem C 116:26295–26299CrossRefGoogle Scholar
  27. 27.
    Habibpour V, Yin C, Kwon G, Vajda S, Palmer RE (2013) Catalytic oxidation of cyclohexane by size-selected palladium clusters pinned on graphite. J Exp Nanosci 8:993–1003CrossRefGoogle Scholar
  28. 28.
    Nesselberger M, Roefzaad M, Hamou RF, Biedermann PU, Schweinberger FF, Kunz S, Schloegl K, H.Wiberg GK, Ashton S, Heiz U, Mayrhofer KJJ, Arenz M (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12:919–924CrossRefGoogle Scholar
  29. 29.
    Tyo EC, Vajda S (2015) Catalysis by clusters with precise numbers of atoms. Nat Nanotechnol 10:577–588CrossRefGoogle Scholar
  30. 30.
    Tsunoyama H, Zhang CH, Akatsuka H, Sekiya H, Nagase T, Nakajima A (2013) Development of high-flux ion source for size-selected nanocluster ions based on high-power impulse magnetron sputtering. Chem Lett 42:857–859CrossRefGoogle Scholar
  31. 31.
    Zhang CH, Tsunoyama H, Akatsuka H, Sekiya H, Nagase T, Nakajima A (2013) Advanced nanocluster ion source based on high-power impulse magnetron sputtering and time-resolved measurements of nanocluster formation. J Phys Chem A 117:10211–10217CrossRefGoogle Scholar
  32. 32.
    Nakaya M, Iwasa T, Tsunoyama H, Eguchi T, Nakajima A (2014) Formation and control of ultrasharp metal/molecule interfaces by controlled immobilization of size-selected metal nanoclusters onto organic molecular films. Adv Func Mater 24:1202–1210CrossRefGoogle Scholar
  33. 33.
    Nakaya M, Iwasa T, Tsunoyama H, Eguchi T, Nakajima A (2014) Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions. Nanoscale 6:14702–14707CrossRefGoogle Scholar
  34. 34.
    Shibuta M, Ohta T, Nakaya M, Tsunoyama H, Eguchi T, Nakajima A (2015) Chemical characterization of an alkali-like superatom consisting of a Ta-encapsulating Si16 cage. J Am Chem Soc 137:14015–14018CrossRefGoogle Scholar
  35. 35.
    Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8:428–433CrossRefGoogle Scholar
  36. 36.
    Yamamoto K, Imaoka T (2014) Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc Chem Res 47:1127–1136CrossRefGoogle Scholar
  37. 37.
    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413CrossRefGoogle Scholar
  38. 38.
    Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117:8208–8271CrossRefGoogle Scholar
  39. 39.
    Yamazoe S, Koyasu K, Tsukuda T (2014) Nonscalable oxidation catalysis of gold clusters. Acc Chem Res 47:816–824CrossRefGoogle Scholar
  40. 40.
    Li G, Abroshan H, Liu C, Zhuo S, Li Z, Xie Y, Kim HJ, Rosi NL, Jin R (2016) Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano 10:7998–8005CrossRefGoogle Scholar
  41. 41.
    Rivero-Crespo MA, Leyva-Pérez A, Corma A (2017) A ligand-free Pt3 cluster catalyzes the Markovnikov hydrosilylation of alkynes with up to 106 turnover frequencies. Chem Eur J 23:1702–1708CrossRefGoogle Scholar
  42. 42.
    Conway BE, Bockris JOM (1956) The d-band character of metals and the rate and mechanism of the electrolytic hydrogen evolution reaction. Nature 178:488–489CrossRefGoogle Scholar
  43. 43.
    Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRefGoogle Scholar
  44. 44.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRefGoogle Scholar
  45. 45.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRefGoogle Scholar
  46. 46.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRefGoogle Scholar
  47. 47.
    Vesborg PCK, Seger B, Chorkendorff I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957CrossRefGoogle Scholar
  48. 48.
    Ding Q, Song B, Xu P, Jin S (2016) Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1:699–726CrossRefGoogle Scholar
  49. 49.
    Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36CrossRefGoogle Scholar
  50. 50.
    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:eaad4998CrossRefGoogle Scholar
  51. 51.
    Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem 39:163–184CrossRefGoogle Scholar
  52. 52.
    Sato S, White JM (1981) Photocatalytic water decomposition and water-gas shift reactions over NaOH-coated, platinized TiO2. J Catal 69:128–139CrossRefGoogle Scholar
  53. 53.
    Kiwi J, Grätzel M (1984) Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light. J Phys Chem 88:1302–1307CrossRefGoogle Scholar
  54. 54.
    Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefGoogle Scholar
  55. 55.
    Li YH, Xing J, Yang XH, Yang HG (2014) Cluster size effects of platinum oxide as active sites in hydrogen evolution reactions. Chem Eur J 20:12377–12380CrossRefGoogle Scholar
  56. 56.
    Kemppainen E, Bodin A, Sebok B, Pedersen T, Seger B, Mei B, Bae D, Vesborg PCK, Halme J, Hansen O, Lund PD, Chorkendorff I (2015) Scalability and feasibility of photoelectrochemical H2 evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ Sci 8:2991–2999CrossRefGoogle Scholar
  57. 57.
    Tan TL, Wang L-L, Zhang J, Johnson DD, Bai K (2015) Platinum nanoparticle during electrochemical hydrogen evolution: adsorbate distribution, active reaction species, and size effect. ACS Catal 5:2376–2383CrossRefGoogle Scholar
  58. 58.
    Wang S, Gao X, Hang X, Zhu X, Han H, Liao W, Chen W (2016) Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J Am Chem Soc 138:16236–16239CrossRefGoogle Scholar
  59. 59.
    Yang H, Wang C, Hu F, Zhang Y, Lu H, Wang Q (2017) Atomic-scale Pt clusters decorated on porous α−Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci China Mater 60:1121–1128Google Scholar
  60. 60.
    Berr MJ, Schweinberger FF, Döblinger M, Sanwald KE, Wolff C, Breimeier J, Crampton AS, Ridge CJ, Tschurl M, Heiz U, Jäckel F, Feldmann J (2012) Size-selected subnanometer cluster catalysts on semiconductor nanocrystal films for atomic scale insight into photocatalysis. Nano Lett 12:5903–5906CrossRefGoogle Scholar
  61. 61.
    Negishi Y, Matsuura Y, Tomizawa R, Kurashige W, Niihori Y, Takayama T, Iwase A, Kudo A (2015) Controlled loading of small Aun clusters (n = 10–39) onto BaLa4Ti4O15 photocatalysts: toward an understanding of size effect of cocatalyst on water-splitting photocatalytic activity. J Phys Chem C 119:11224–11232CrossRefGoogle Scholar
  62. 62.
    Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638CrossRefGoogle Scholar
  63. 63.
    Escalera-López D, Niu Y, Yin J, Cooke K, Rees NV, Palmer RE (2016) Enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters. ACS Catal 6:6008–6017CrossRefGoogle Scholar
  64. 64.
    Kwak K, Choi W, Tang Q, Kim M, Lee Y, Jiang DE, Lee D (2017) A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat Commun 8:14723CrossRefGoogle Scholar
  65. 65.
    Nagaoka S, Matsumoto T, Okada E, Mitsui M, Nakajima A (2006) Room-temperature isolation of V(benzene)2 sandwich clusters via soft-landing into n-alkanethiol self-assembled monolayers. J Phys Chem B 110:16008–16017CrossRefGoogle Scholar
  66. 66.
    Nakajima A (2013) Study on electronic properties of composite clusters toward nanoscale functional advanced materials. Bull Chem Soc Jpn 86:414–437CrossRefGoogle Scholar
  67. 67.
    Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, Koinuma H (1994) Atomic control of the SrTiO3 crystal surface. Science 266:1540–1542CrossRefGoogle Scholar
  68. 68.
    Horcas I, Fernández R, Gómez-Rodríguez JM, Cochero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705CrossRefGoogle Scholar
  69. 69.
    Nakajima A, Kishi T, Sugioka T, Kaya K (1991) Electronic and geometric structures of aluminum-boron negative cluster ions (AlnBm ). Chem Phys Lett 187:239–244CrossRefGoogle Scholar
  70. 70.
    Hotop H, Lineberger WC (1985) Binding energies in atomic negative ions: II. J Chem Phys Ref Data 14:731–750CrossRefGoogle Scholar
  71. 71.
    Zhang CH, Tsunoyama H, Feng Y, Nakajima A (2016) Extended Smoluchowski model for the formation of size-selected silver nanoclusters generated via modulated pulsed power magnetron sputtering. J Phys Chem C 120:5667–5672CrossRefGoogle Scholar
  72. 72.
    Zhang J, Doutt D, Merz T, Chakhalian J, Kareev M, Liu J, Brillson LJ (2009) Depth-resolved subsurface defects in chemically etched SrTiO3. Appl Phys Lett 94:092904CrossRefGoogle Scholar
  73. 73.
    Sheng W, Myint M, Chen JG, Yan Y (2013) Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 6:1509–1512CrossRefGoogle Scholar
  74. 74.
    Ervin KM, Ho J, Lineberger WC (1988) Electronic and vibrational structure of transition metal trimers: photoelectron spectra of Ni3 , Pd3 , and Pt3 . J Chem Phys 89:4514–4521CrossRefGoogle Scholar
  75. 75.
    Pontius N, Bechthold PS, Neeb M, Eberhardt W (2000) Femtosecond multi-photon photoemission of small transition metal cluster anions. J Electron Spectrosc Relat Phenom 106:107–116CrossRefGoogle Scholar
  76. 76.
    Nie A, Wu J, Zhou C, Yao S, Luo C, Forrey RC, Cheng H (2007) Structural evolution of subnano platinum clusters. Int J Quantum Chem 107:219–224CrossRefGoogle Scholar
  77. 77.
    Wood DM (1981) Classical size dependence of the work function of small metallic spheres. Phys Rev Lett 46:749–749CrossRefGoogle Scholar
  78. 78.
    Ganteför G, Gausa M, Meiwes-Broer K-H, Lutz HO (1990) Photoelectron spectroscopy of silver and palladium cluster anions: electron delocalization versus localization. J Chem Soc Faraday Trans 86:2483–2488CrossRefGoogle Scholar
  79. 79.
    Aprà E, Fortunelli A (2003) Density-functional calculations on platinum nanoclusters: Pt13, Pt38, and Pt55. J Phys Chem A 107:2934–2942CrossRefGoogle Scholar
  80. 80.
    Ho J, Polak ML, Ervin KM, Lineberger WC (1993) Photoelectron spectroscopy of nickel group dimers: Ni2 , Pd2 , and Pt2 . J Chem Phys 99:8542–8551CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and TechnologyKeio UniversityKohoku-ku, YokohamaJapan
  2. 2.Nakajima Designer Nanocluster Assembly Project, Exploratory Research for Advanced Technology (ERATO)Japan Science and Technology AgencySakado, KawasakiJapan
  3. 3.Keio Institute of Pure and Applied Sciences (KiPAS)Keio UniversityKohoku-ku, YokohamaJapan
  4. 4.School of ScienceZhejiang University of Science and TechnologyHangzhouPeople’s Republic of China
  5. 5.Department of Physics, Graduate School of ScienceTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations