Topics in Catalysis

, Volume 61, Issue 1–2, pp 62–70 | Cite as

Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters

  • Jan Vanbuel
  • Mei-ye Jia
  • Piero Ferrari
  • Sandy Gewinner
  • Wieland Schöllkopf
  • Minh Tho Nguyen
  • André Fielicke
  • Ewald Janssens
Original Paper


The interaction of hydrogen with Al n Rh2 + (n = 10–13) clusters is studied by mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Comparing the IRMPD spectra with predictions obtained using density functional theory calculations allows for the identification of the hydrogen binding geometry. For n = 10 and 11, a single H2 molecule binds dissociatively, whereas for n = 12 and 13, it adsorbs molecularly. Upon adsorption of a second H2 to Al12Rh2 +, both hydrogen molecules dissociate. Theoretical calculations suggest that the molecular adsorption for n = 12 and 13 is not due to kinetic impediment of the hydrogenation reaction by an activation barrier, but due to a higher binding energy of the molecularly adsorbed hydrogen–cluster complex. Inspection of the highest occupied molecular orbitals shows that the hydrogen molecule initially forms a strongly bound Kubas complex with the Al11–13Rh2 + clusters, whereas it only binds weakly with Al10Rh2 +.


Hydrogen storage Metal clusters Mass spectrometry IR spectroscopy Density functional theory calculations Ion-molecule reactions 



This work is supported by the KU Leuven Research Council (GOA/14/007). J.V. would like to thank the FWO—Research Foundation Flanders for a PhD fellowship. P.F. acknowledges CONICyT for a Becas Chile scholarship. A.F. thanks the Deutsche Forschungsgemeinschaft for a Heisenberg grant (FI 893/5).

Supplementary material

11244_2017_878_MOESM1_ESM.docx (11.9 mb)
Supplementary material 1 (DOCX 12200 KB)


  1. 1.
    Dawson VP, Bowles MD (2004) Taming Liquid Hydrogen: The Centaur Upper Stage Rocket, 1958–2002. Diane Publishing CoGoogle Scholar
  2. 2.
    Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617. CrossRefGoogle Scholar
  3. 3.
    Orimo S-I, Nakamori Y, Eliseo JR et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132. CrossRefGoogle Scholar
  4. 4.
    Ley MB, Jepsen LH, Lee Y et al (2014) Complex hydrides for hydrogen storage—new perspectives. Mater Today 17:122–128. CrossRefGoogle Scholar
  5. 5.
    Chaudhuri S, Graetz J, Ignatov A et al (2006) Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach. J Am Chem Soc 128:11404–11415. CrossRefGoogle Scholar
  6. 6.
    Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP (2008) Sodium alanate nanoparticles - linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765. CrossRefGoogle Scholar
  7. 7.
    Zaera F (2013) Nanostructured materials for applications in heterogeneous catalysis. Chem Soc Rev 42:2746–2762. CrossRefGoogle Scholar
  8. 8.
    Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2:206–211. CrossRefGoogle Scholar
  9. 9.
    Tyo EC, Vajda S (2015) Catalysis by clusters with precise numbers of atoms. Nat Nanotechnol 10:577–588. CrossRefGoogle Scholar
  10. 10.
    Janssens E, Le HT, Lievens P (2015) Adsorption of propene on neutral gold clusters in the gas phase. Chem-A Eur J 21:15256–15262. CrossRefGoogle Scholar
  11. 11.
    Lang SM, Bernhardt TM (2012) Gas phase metal cluster model systems for heterogeneous catalysis. Phys Chem Chem Phys 14:9255–9269. CrossRefGoogle Scholar
  12. 12.
    Schwarz H (2015) Doping effects in cluster-mediated bond activation. Angew Chem Int Ed 54:10090–10100. CrossRefGoogle Scholar
  13. 13.
    Sanchez A, Abbet S, Heiz U, et al (1999) When Gold Is Not Noble: Nanoscale Gold Catalysts. J Phys Chem A 103:9573–9578. CrossRefGoogle Scholar
  14. 14.
    Ferrari P, Molina LM, Kaydashev VE et al (2016) Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification. Angew Chem Int Ed 128:11225–11229. CrossRefGoogle Scholar
  15. 15.
    Kiohara VO, Carvalho EFV, Paschoal CWA et al (2013) DFT and CCSD (T) electronic properties and structures of aluminum clusters: Alnx (n = 1–9, x = 0, ± 1). Chem Phys Lett 568–569:42–48. CrossRefGoogle Scholar
  16. 16.
    Upton TH, Cox DM, Kaldor A (1987) Activation and chemisorption of hydrogen on aluminum clusters. In: Jena P, Rao BK, Khanna SN (eds) Physics and chemistry of small clusters. Springer, New York, pp 755–768. CrossRefGoogle Scholar
  17. 17.
    Pino I, Kroes GJ, Van Hemert MC (2010) Hydrogen dissociation on small aluminum clusters. J Chem Phys 133:184304. CrossRefGoogle Scholar
  18. 18.
    Zhang F, Wang Y, Chou MY (2012) Hydrogen interaction with the Al surface promoted by subsurface alloying with transition metals. J Phys Chem C 116:18663–18668. CrossRefGoogle Scholar
  19. 19.
    Chopra IS, Chaudhuri S, Veyan JF, Chabal YJ (2011) Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. Nat Mater 10:986–986. CrossRefGoogle Scholar
  20. 20.
    Menezes WJC, Knickelbein MB (1991) Bimetallic clusters of cobalt and aluminum: ionization potentials versus reactivity, and the importance of geometric structure. Chem Phys Lett 183:357–362. CrossRefGoogle Scholar
  21. 21.
    Nonose S, Sone Y, Onodera K et al (1989) Reactivity study of alloy clusters made of aluminum and some transition metals with hydrogen. Chem Phys Lett 164:427–432. CrossRefGoogle Scholar
  22. 22.
    Vanbuel J, Fernandez EM, Ferrari P et al (2017) Hydrogen chemisorption on singly vanadium-doped aluminum clusters. Chem-A Eur J 23:1–7. CrossRefGoogle Scholar
  23. 23.
    Charkin OP, Mikhailin AA, Klimenko NM (2013) Theoretical modeling of elementary reactions of dissociative addition of an H2 molecule to aluminum clusters MAl12 doped with early 3d and 4d transition metal atoms. Russ J Inorg Chem 58:1479–1488. CrossRefGoogle Scholar
  24. 24.
    Pramann A, Nakajima A, Kaya K (2001) Photoelectron spectroscopy of bimetallic aluminum cobalt cluster anions: comparison of electronic structure and hydrogen chemisorption rates. J Chem Phys 115:5404–5410. CrossRefGoogle Scholar
  25. 25.
    Niu J, Rao BK, Jena P (1992) Binding of hydrogen molecules by a transition-metal ion. Phys Rev B 68:2277–2281. Google Scholar
  26. 26.
    Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205. CrossRefGoogle Scholar
  27. 27.
    Truong NX, Haertelt M, Jaeger BKAA. et al (2016) Characterization of neutral boron-silicon clusters using infrared spectroscopy: the case of Si6B. Int J Mass Spectrom 395:1–6. CrossRefGoogle Scholar
  28. 28.
    Schöllkopf W, Gewinner S, Erlebach W et al (2014) The new IR FEL facility at the Fritz-Haber-Institut in Berlin. In: Proceedings of FEL 2014, Basel, WEB04, pp 629–634Google Scholar
  29. 29.
    Schöllkopf W, Gewinner S, Junkes H et al (2015) The new IR and THz FEL facility at the Fritz Haber Institute in Berlin. Proc SPIE 9512:95121L. CrossRefGoogle Scholar
  30. 30.
    Nesbitt DJ, Field RW (1996) Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J Phys Chem 100:12735–12756. CrossRefGoogle Scholar
  31. 31.
    Herzberg G (1969) Dissociation energy and ionization potential of molecular hydrogen. Phys Rev Lett 23:1081–1083. CrossRefGoogle Scholar
  32. 32.
    Kawamura H, Kumar V, Sun Q, Kawazoe Y (2001) Magic behavior and bonding nature in hydrogenated aluminum clusters. Mater Chem Phys 115:612–617. Google Scholar
  33. 33.
    Wang H, Wang Y, Lv J et al (2016) CALYPSO structure prediction method and its wide application. Comput Mater Sci 112:406–415. CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. CrossRefGoogle Scholar
  35. 35.
    Petrie S, Stranger R (2004) DFT and metal–metal bonding: a dys-functional treatment for multiply charged complexes? Inorg Chem 43:2597–2610. CrossRefGoogle Scholar
  36. 36.
    Liu Y, Zhang J, Li J et al (2016) Hydrogen, oxygen and nitrogen adsorption on Rhn–1X (n = 2–5, X = 3d, 4d atoms) clusters: a DFT study. Comput Theor Chem 1085:56–65. CrossRefGoogle Scholar
  37. 37.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465. CrossRefGoogle Scholar
  38. 38.
    Igel-Mann G, Stoll H, Preuss H (1988) Pseudopotentials for main group elements (IIIa through VIIa). Mol Phys 65:1321–1328. CrossRefGoogle Scholar
  39. 39.
    Schäfer A, Huber C, Ahlrichs R et al (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829/7. CrossRefGoogle Scholar
  40. 40.
    Shayeghi A, Johnston RL, Rayner DM et al (2015) The nature of bonding between argon and mixed gold–silver trimers. Angew Chem 54:10675–10680. CrossRefGoogle Scholar
  41. 41.
    Gehrke R, Gruene P, Fielicke A et al (2013) Nature of Ar bonding to small Con + clusters and its effect on the structure determination by far-infrared absorption spectroscopy. J Chem Phys 130:34306. CrossRefGoogle Scholar
  42. 42.
    Janssens E, Gruene P, Meijer G et al (2007) Argon physisorption as structural probe for endohedrally doped silicon clusters. Phys Rev Lett 99:1–4. CrossRefGoogle Scholar
  43. 43.
    Lang SM, Claes P, Neukermans S, Janssens E (2011) Cage structure formation of singly doped aluminum cluster cations AlnTM+ (TM = Ti, V, Cr). J Am Soc Mass Spectrom 22:1508–1514. CrossRefGoogle Scholar
  44. 44.
    Fernández EM, Vega A, Balbás LC (2013) Theoretical study of AlnV+ clusters and their interaction with Ar. J Chem Phys 139:214305. CrossRefGoogle Scholar
  45. 45.
    Knickelbein MB (1999) Reactions of transition metal clusters with small molecules. Annu Rev Phys Chem 50:79–115. CrossRefGoogle Scholar
  46. 46.
    Swart I, Gruene P, Fielicke A et al (2008) Molecular adsorption of H2 on small cationic nickel clusters. Phys Chem Chem Phys 10:5743–5745. CrossRefGoogle Scholar
  47. 47.
    Swart I, de Groot FMF, Weckhuysen BM et al (2008) H2 adsorption on 3d transition metal clusters: a combined infrared spectroscopy and density functional study. J Phys Chem A 112:1139–1149. CrossRefGoogle Scholar
  48. 48.
    Huber K-P (2013) Molecular spectra and molecular structure: IV. Constants of diatomic molecules. Springer, New York. Google Scholar
  49. 49.
    Burkart S, Blessing N, Gantefor G (1999) Indication of a size-dependent transition from molecular to dissociative chemisorption on clusters. Phys Rev B 60:15639–15642. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Solid State Physics & MagnetismKU LeuvenLeuvenBelgium
  2. 2.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlinGermany
  3. 3.Department of ChemistryKU LeuvenLeuvenBelgium
  4. 4.Institut für Optik und Atomare PhysikTU BerlinBerlinGermany

Personalised recommendations